题意就是求[0, R)内转成2进制数里1的个数为n的和。
思路很直接,但是需要2个递推,一个递推是求前i个有j个1有几个,其实就是C(i,j),直接dp1[i][j] = dp1[i-1][j-1]+dp1[i-1][j],为何要求这个?因为后面有用,之后再说。题目是要求这些数的和,那么下一个递推转移方程应该是dp2[i][j] = dp2[i-1][j-1]+dp2[i-1][j]+X,因为求的是和这里这个X应该是新加进来的1也就是2的i-1次方,因为不知道加了几个,所以就要用到上一个递推了,乘以dp1[i-1][j]。
这些是预处理,复杂度o(n^2)。
接下来读入n,R,从R高位开始枚举,假如第i位是1,故这位是0的话后面就随便了,所以答案直接加上dp2[len-i-1][n],然后n--,然后再让第i位是1,再枚举后面的,这样做不对,为啥?因为算的是和,枚举下面的时候,在先前确定的1也要加上去的,所以还要有个变量P去累加先前确定了1的和,再去乘以数字的个数,也就是dp1。具体看程序。
AC代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned long long
#define eps 1e-4
#define NMAX 200005
#define MOD 1000000007
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
ll dp1[1005][1005],dp2[1005][1005],er[1005];
char r[1005];
void init()
{
er[0] = 1;
for(int i = 1; i <= 1000; i++)
er[i] = (er[i-1]*2LL)%MOD;
dp1[0][0] = 1LL;
for(int i = 1; i <= 1000; i++)
for(int j = 0; j <= i; j++) dp1[i][j] = (dp1[i-1][j-1]+dp1[i-1][j])%MOD;
for(int i = 1; i <= 1000; i++)
for(int j = 0; j <= i; j++) dp2[i][j] = ((dp2[i-1][j-1]+dp2[i-1][j])%MOD+(dp1[i-1][j-1]*er[i-1])%MOD)%MOD;
}
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o4.txt","w",stdout);
#endif // GLQ
init();
int n;
while(~scanf("%d%s",&n,r))
{
int len = strlen(r);
ll ans = 0,p = 0;
for(int i = 0; i < len; i++)
{
if(r[i] == '1')
{
ans = ((ans+dp2[len-i-1][n])%MOD+dp1[len-i-1][n]*p)%MOD;
n--;
p = (p+er[len-i-1])%MOD;
if(n == -1) break;
}
}
printf("%I64d\n",ans);
}
return 0;
}