hdu 5456 Matches Puzzle Game(dp)

题意:给出n个火柴,要求拼出形如x-y=z的等式,x,y,z都为正数。问情况总数。

做法:用一个数组a[i]代表用了i根火柴拼成数字情况总数,数组b[i]代表用了i根火柴拼成2个数字(相差1)的情况总数。

然后dp[i][0]代表用了i根火柴不借位的情况数,dp[i][1]则代表借位,然后枚举前面放的新的数字是几然后分类讨论即可。

做法比较搓,细节问题多思考量比较大。

AC代码:

#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned __int64
#define eps 1e-8
#define NMAX 200000000
#define MOD 530600414
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
    char c;
    int flag = 0;
    ret=0;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c == '-')
    {
        flag = 1;
        c = getchar();
    }
    while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
    if(flag) ret = -ret;
}

ll a[605],b[1105];
int shu[10] = {6,2,5,5,4,5,6,3,7,6};

ll dp[605][2];

int main()
{
#ifdef GLQ
    freopen("input.txt","r",stdin);
//    freopen("o.txt","w",stdout);
#endif
    int T,cas = 1;
    scanf("%d",&T);
    while(T--)
    {
        int n;
        ll m;
        scanf("%d%I64d",&n,&m);
        memset(a,0,sizeof(a));
        a[0] = 1;
        for(int i = 0; i <= n; i++)
        {
            int lim = i == 0 ? 1 : 0;
            for(int j = lim; j <= 9; j++)
                a[i+shu[j]] = (a[i+shu[j]]+a[i])%m;
        }
        memset(b,0,sizeof(b));
        b[2] = 1;
        for(int i = 3; i <= n; i++)
        {
            for(int s1 = 1; s1 <= 9; s1++) if(i >= shu[s1]+shu[s1-1])
                {
                    int p = i-shu[s1]-shu[s1-1];
                    if(((s1 == 1 && p > 0) || s1 != 1) && p%2 == 0)
                        b[i] = (b[i]+a[p/2])%m;
                }
            if(i >= shu[0]+shu[9]) b[i] = (b[i]+b[i-shu[0]-shu[9]])%m;
        }
        n -= 3;
        memset(dp,0,sizeof(dp));
        dp[0][0] = 1;
        ll ans = 0;
        for(int i = 0; i < n; i++)
        {
            if(dp[i][0])
            {
                for(int s1 = 0; s1 <= 9; s1++)
                    for(int s2 = 0; s2 <= 9; s2++)
                    {
                        if(s1 > s2)
                        {
                            int ha = shu[s1]+shu[s2]+shu[s1-s2];
                            if(s2)
                            {
                                int wo = 2, p = n-i-ha;
                                if(p == 0) wo = 1;
                                if(p >= 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m*wo%m)%m;
                            }
                            else
                            {
                                int p = n-i-ha;
                                if(p > 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m)%m;
                            }
                            dp[i+ha][0] = (dp[i+ha][0]+dp[i][0])%m;
                        }
                        else if(s1 < s2)
                        {
                            int ha = shu[s1]+shu[s2]+shu[s1-s2+10];
                            if(n-i-ha >= 2)
                            {
                                int wo = n-i-ha == 2 ? 1 : 2;
                                ans = (ans+dp[i][0]*b[n-i-ha]%m*wo%m)%m;
                            }
                            dp[i+ha][1] = (dp[i+ha][1]+dp[i][0])%m;
                        }
                        else
                        {
                            int ha = shu[s1]+shu[s2]+shu[0];
                            int p = n-i-ha;
                            if(s1 != 0 && p > 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m)%m;
                            dp[i+ha][0] = (dp[i+ha][0]+dp[i][0])%m;
                        }
                    }
            }
            if(dp[i][1])
            {
                for(int s1 = 0; s1 <= 9; s1++)
                    for(int s2 = 0; s2 <= 9; s2++)
                    {
                        if(s1-1 >= s2)
                        {
                            int ha = shu[s1]+shu[s2]+shu[s1-1-s2];
                            if(s2 != 0 && s1-1-s2 != 0)
                            {
                                int wo = 2, p = n-i-ha;
                                if(p == 0) wo = 1;
                                if(p >= 0 && p%2 == 0) ans = (ans+dp[i][1]*a[p/2]%m*wo%m)%m;
                            }
                            else if((s2 == 0 && s1-1-s2 != 0) || (s2 != 0 && s1-1-s2 == 0))
                            {
                                int p = n-i-ha;
                                if(p > 0 && p%2 == 0) ans = (ans+dp[i][1]*a[p/2]%m)%m;
                            }
                            dp[i+ha][0] = (dp[i+ha][0]+dp[i][1])%m;
                        }
                        else
                        {
                            int ha = shu[s1]+shu[s2]+shu[s1+9-s2];
                            if(s2 == 0 || s1+9-s2 == 0)
                            {
                                int p = n-i-ha;
                                if(p > 2) ans = (ans+dp[i][1]*b[p]%m);
                            }
                            else
                            {
                                int p = n-i-ha;
                                int wo = p == 2 ? 1 : 2;
                                if(p >= 2) ans = (ans+dp[i][1]*b[p]%m*wo%m)%m;
                            }
                            dp[i+ha][1] = (dp[i+ha][1]+dp[i][1])%m;
                        }
                    }
            }
        }
        printf("Case #%d: %I64d\n",cas++,ans);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值