题意:给出n个火柴,要求拼出形如x-y=z的等式,x,y,z都为正数。问情况总数。
做法:用一个数组a[i]代表用了i根火柴拼成数字情况总数,数组b[i]代表用了i根火柴拼成2个数字(相差1)的情况总数。
然后dp[i][0]代表用了i根火柴不借位的情况数,dp[i][1]则代表借位,然后枚举前面放的新的数字是几然后分类讨论即可。
做法比较搓,细节问题多思考量比较大。
AC代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<ctype.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<cstdlib>
#include<stack>
#include<queue>
#include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<string.h>
#include<string>
#include<sstream>
#include<bitset>
using namespace std;
#define ll __int64
#define ull unsigned __int64
#define eps 1e-8
#define NMAX 200000000
#define MOD 530600414
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1)
template<class T>
inline void scan_d(T &ret)
{
char c;
int flag = 0;
ret=0;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c == '-')
{
flag = 1;
c = getchar();
}
while(c>='0'&&c<='9') ret=ret*10+(c-'0'),c=getchar();
if(flag) ret = -ret;
}
ll a[605],b[1105];
int shu[10] = {6,2,5,5,4,5,6,3,7,6};
ll dp[605][2];
int main()
{
#ifdef GLQ
freopen("input.txt","r",stdin);
// freopen("o.txt","w",stdout);
#endif
int T,cas = 1;
scanf("%d",&T);
while(T--)
{
int n;
ll m;
scanf("%d%I64d",&n,&m);
memset(a,0,sizeof(a));
a[0] = 1;
for(int i = 0; i <= n; i++)
{
int lim = i == 0 ? 1 : 0;
for(int j = lim; j <= 9; j++)
a[i+shu[j]] = (a[i+shu[j]]+a[i])%m;
}
memset(b,0,sizeof(b));
b[2] = 1;
for(int i = 3; i <= n; i++)
{
for(int s1 = 1; s1 <= 9; s1++) if(i >= shu[s1]+shu[s1-1])
{
int p = i-shu[s1]-shu[s1-1];
if(((s1 == 1 && p > 0) || s1 != 1) && p%2 == 0)
b[i] = (b[i]+a[p/2])%m;
}
if(i >= shu[0]+shu[9]) b[i] = (b[i]+b[i-shu[0]-shu[9]])%m;
}
n -= 3;
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
ll ans = 0;
for(int i = 0; i < n; i++)
{
if(dp[i][0])
{
for(int s1 = 0; s1 <= 9; s1++)
for(int s2 = 0; s2 <= 9; s2++)
{
if(s1 > s2)
{
int ha = shu[s1]+shu[s2]+shu[s1-s2];
if(s2)
{
int wo = 2, p = n-i-ha;
if(p == 0) wo = 1;
if(p >= 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m*wo%m)%m;
}
else
{
int p = n-i-ha;
if(p > 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m)%m;
}
dp[i+ha][0] = (dp[i+ha][0]+dp[i][0])%m;
}
else if(s1 < s2)
{
int ha = shu[s1]+shu[s2]+shu[s1-s2+10];
if(n-i-ha >= 2)
{
int wo = n-i-ha == 2 ? 1 : 2;
ans = (ans+dp[i][0]*b[n-i-ha]%m*wo%m)%m;
}
dp[i+ha][1] = (dp[i+ha][1]+dp[i][0])%m;
}
else
{
int ha = shu[s1]+shu[s2]+shu[0];
int p = n-i-ha;
if(s1 != 0 && p > 0 && p%2 == 0) ans = (ans+a[p/2]*dp[i][0]%m)%m;
dp[i+ha][0] = (dp[i+ha][0]+dp[i][0])%m;
}
}
}
if(dp[i][1])
{
for(int s1 = 0; s1 <= 9; s1++)
for(int s2 = 0; s2 <= 9; s2++)
{
if(s1-1 >= s2)
{
int ha = shu[s1]+shu[s2]+shu[s1-1-s2];
if(s2 != 0 && s1-1-s2 != 0)
{
int wo = 2, p = n-i-ha;
if(p == 0) wo = 1;
if(p >= 0 && p%2 == 0) ans = (ans+dp[i][1]*a[p/2]%m*wo%m)%m;
}
else if((s2 == 0 && s1-1-s2 != 0) || (s2 != 0 && s1-1-s2 == 0))
{
int p = n-i-ha;
if(p > 0 && p%2 == 0) ans = (ans+dp[i][1]*a[p/2]%m)%m;
}
dp[i+ha][0] = (dp[i+ha][0]+dp[i][1])%m;
}
else
{
int ha = shu[s1]+shu[s2]+shu[s1+9-s2];
if(s2 == 0 || s1+9-s2 == 0)
{
int p = n-i-ha;
if(p > 2) ans = (ans+dp[i][1]*b[p]%m);
}
else
{
int p = n-i-ha;
int wo = p == 2 ? 1 : 2;
if(p >= 2) ans = (ans+dp[i][1]*b[p]%m*wo%m)%m;
}
dp[i+ha][1] = (dp[i+ha][1]+dp[i][1])%m;
}
}
}
}
printf("Case #%d: %I64d\n",cas++,ans);
}
return 0;
}