3D成像原理

3D成像:光学的再次创新 前言:光学一直是科技创新的重头戏,智能手机摄像头经历了2D时代像素和个数的倍增,孕育了大立光等优质公司。3D成像技术的成熟拉开了二维向三维升级的帷幕,有望带动光学创新大革命(绝非“微创新”可比),本文作为市场首篇深度剖析,将为投资者挖掘相关投资机会。 1、3D 成像究...

2019-03-14 09:16:10

阅读数 184

评论数 0

机器学习-SVD

机器学习中SVD总结 https://mp.weixin.qq.com/s/Dv51K8JETakIKe5dPBAPVg 目录: 矩阵分解 1.1 矩阵分解作用 1.2 矩阵分解的方法 1.3 推荐学习的经典矩阵分解算法 SVD具体介绍 2.1 特征值、特征...

2019-03-12 21:19:57

阅读数 67

评论数 0

机器学习-SVD分解

ref:https://www.cnblogs.com/lzllovesyl/p/5243370.html 本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。 1.SVD详解 SVD(singular...

2019-03-06 10:53:42

阅读数 34

评论数 0

机器学习-正则化方法及原理

正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训...

2019-03-06 10:51:49

阅读数 63

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭