P1880 [NOI1995]石子合并(四边形不等式优化DP)

题目地址


状态设计:

  • fmax[i][j]:从第i堆合并到第j堆的最大得分.
  • fmin[i][j]:从第i堆合并到第j堆的最小得分.
  • s[i][j]:fmin[i][j]被更新时所使用的中间点k.

易错点:

  • 由于有环,所以需要断链加一倍.
  • fmax[i][j]不具有单调性,不能使用四边形不等式优化.
  • 枚举第一维时,由于需要用到i和i+1,需要倒序循环.(即从2*n-1到1)

#include<cstdio>
#include<iostream>
using namespace std;
const int MAXN=205,INF=0x3f3f3f3f;
int a[MAXN],sum[MAXN];
int fmin[MAXN][MAXN],fmax[MAXN][MAXN],s[MAXN][MAXN];
int main(){
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        a[i+n]=a[i];
        sum[i]=sum[i-1]+a[i];
        s[i][i]=i;
    }
    for(int i=n+1;i<=2*n;i++){
        sum[i]=sum[i-1]+a[i];
        s[i][i]=i;
    }
    for(int i=2*n-1;i;i--)
        for(int j=i+1;j<=2*n;j++){//
            int bestK=0,minCost=INF;
            fmax[i][j]=max(fmax[i][j-1],fmax[i+1][j])+sum[j]-sum[i-1];
            for(int k=s[i][j-1];k<=s[i+1][j];k++){
                int nowCost=fmin[i][k]+fmin[k+1][j]+(sum[j]-sum[i-1]);
                if(nowCost<minCost){
                    minCost=nowCost;
                    bestK=k;
                }
            }
            s[i][j]=bestK;
            fmin[i][j]=minCost;
        }
    int aMax=-INF,aMin=INF;
    for(int i=1;i<=n;i++){
        aMax=max(aMax,fmax[i][i+n-1]);
        aMin=min(aMin,fmin[i][i+n-1]);
    }
    printf("%d\n%d",aMin,aMax);
    return 0;
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值