农业科研,玉米茎秆宽度原位识别方法

中国农大科研团队开发了一种玉米茎秆宽度原位检测方法,利用YOLOv8技术进行高精度识别,解决了人工测量繁琐和机器视觉精度低的问题。改进后的YOLOv8模型表现出优异的识别性能,为农业生产提供精确的测量支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

玉米倒伏直接影响到产量与品质,造成倒伏的原因是多样的,比如气候因素(如暴雨、强风等极端天气)、土壤条件(土壤缺氧、土壤硬度过大等因素)、种植管理(比如种植密度、施肥不当、茎秆过于粗壮等)、玉米品种等,其中,玉米茎秆宽度是影响玉米抗倒伏能力的重要指标。
农业科研

玉米茎秆宽度测量存在人工采集过程烦琐、设备自动采集识别精度误差较大等问题,中国农业大学农业农村部农业信息获取技术重点实验室携手中国农业大学智慧农业系统集成研究教育部重点实验室、中国农业大学水利与土木工程学院组成科研团队,研究一种玉米茎秆宽度原位检测与高精度识别方法具有重要应用价值。

采用ZED2i双目相机并将其固定在田间获取实时的玉米茎秆左目和右目图片,对原始图片进行数据增强,使用YOLOv8对玉米茎秆进行识别,再通过多次增加注意力机制模块,和替换损失函数的方法,进一步提高玉米茎秆的识别精度,然后通过对玉米茎秆的三维重建,获取识别框边界点在世界坐标系下的三维数据,通过距离公式计算出茎秆宽度。最后对改进后的YOLOv8模型与YOLOv8原模型、YOLOv7、YOLOv5、Faster RCNN、SSD进行对比,验证模型的识别准确性和识别精度。

改进后的YOLOv8模型的查准率P、查全率R、平均精确率mAP0.5、平均精确率mAP0.5∶0.95分别达到了96.8%、94.1%、96.6%、77.0%,玉米茎秆宽度原位检测宽度计算的线性回归决定系数R2,均方根误差RMSE和平均绝对误差MAE分别为0.373、0.265和0.244 cm,可满足实际生产对玉米茎秆宽度测量精度的要求。

该研究提出的基于改进YOLOv8模型的玉米茎秆宽度原位识别方法,可以实现对玉米茎秆的原位准确识别,很好地解决了目前人工测量耗时费力和机器视觉识别精度较差的问题,为实际生产应用提供了理论依据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值