GBDT、XGBoost、LightGBM算法公式推导

本文详细介绍了GBDT、XGBoost和LightGBM算法的公式推导。首先,对GBDT的损失函数进行了分析,求得了第一个基函数F0(X)的表达式,并通过泰勒展开确定了最优叶子节点的取值。接着,针对XGBoost,展示了其目标函数的泰勒展开形式,特别讨论了logitloss损失函数的两种形式及其导数。最后,提到了LightGBM的相关内容。这些推导对于理解这些机器学习算法的工作原理至关重要。
摘要由CSDN通过智能技术生成

一、GBDT公式推导

1、第一个基函数:
F 0 ( X ) = 1 2 l o g 1 + y ‾ 1 − y ‾ (1.1) F_0(X)=\frac{1}{2}log\frac{1+\overline{y}}{1-\overline{y}} \tag{1.1} F0(X)=21log1y1+y(1.1)
对于损失函数 L ( y , F ) = l o g ( 1 + e − 2 y F ) , y ∈ { − 1 , 1 } L(y, F)=log(1+e^{-2yF}), y\in \left\{-1, 1\right\} L(y,F)=log(1+e2yF),y{ 1,1},求损失函数最小对应的 F F F值。求一阶导数:
L ′ = − 2 y e − 2 y F 1 + e − 2 y F (1.2) L^{'}=\frac{-2ye^{-2yF}}{1+e^{-2yF}} \tag{1.2} L=1+e2yF2ye2yF(1.2)

{ c o u n t ( y = + 1 ) = m 1 c o u n t ( y = − 1 ) = m 2 (1.3) \begin{cases} &count(y=+1)=m1\\ &count(y=-1)=m2 \end{cases} \tag{1.3} { count(y=+1)=m1count(y=1)=m2(1.3)
则有
{ m 1 + m 2 = n m 1 − m 2 n = y ‾ (1.4) \begin{cases} m1+m2=n\\ \frac{m1-m2}{n}=\overline{y} \end{cases} \tag{1.4} { m1+m2=nnm1m2=y(1.4)

{ m 1 = n 2 ( 1 + y ‾ ) m 2 = n 2 ( 1 − y ‾ ) (1.5) \begin{cases} m1=\frac{n}{2}(1+\overline{y})\\ m2=\frac{n}{2}(1-\overline{y}) \end{cases} \tag{1.5} { m1=2n(1+y)m2=2n(1y)(1.5)
∑ L ′ = 0 \sum{L^{'}=0} L=0得到,
∑ L ′ = ∑ y = 1 L ′ + ∑ y = − 1 L ′ = 0 (1.6) \sum{L^{'}=\sum_{y=1}L^{'}+\sum_{y=-1}L^{'}=0} \tag{1.6} L=y=1L+y=1L=0(1.6)
( 1.5 ) (1.5) (1.5)带入 ( 1.6 ) (1.6) (1.6),得到,
L ′ = ∑ y = 1 L ′ + ∑ y = − 1 L ′ = n 2 ( 1 + y ‾ ) ∗ − 2 e − 2 F 1 + e − 2 F + n 2 ( 1 − y ‾ ) ∗ 2 e 2 F 1 + e 2 F = n 2 ( 1 + y ‾ ) ∗ − 2 1 + e 2 F + n 2 ( 1 − y ‾ ) ∗ 2 e 2 F 1 + e 2 F = n 1 + e 2 F [ − ( 1 + y ‾ ) + e 2 F ( 1 − y ‾ ) ] (1.7) \begin{aligned} L^{'}&=\sum_{y=1}L^{'}+\sum_{y=-1}L^{'}\\\\ &=\frac{n}{2}(1+\overline{y})*\frac{-2e^{-2F}}{1+e^{-2F}} + \frac{n}{2}(1-\overline{y})*\frac{2e^{2F}}{1+e^{2F}}\\\\ &=\frac{n}{2}(1+\overline{y})*\frac{-2}{1+e^{2F}} + \frac{n}{2}(1-\overline{y})*\frac{2e^{2F}}{1+e^{2F}}\\\\ &=\frac{n}{1+e^{2F}}[-(1+\overline{y}) + e^{2F}(1-\overline{y})] \end{aligned} \tag{1.7} L=y=1L+y=1L=2n(1+y)1+e2F2e2F+2n(1y)1+e2F2e2F=2n(1+y)1+e2F2+2n(1y)1+e2F2e2F=1+e2Fn[(1+y)+e2F<

### 回答1: Adaboost、GBDTXGBoostLightGBM都是机器学习中常用的集成学习算法。 Adaboost是一种迭代算法,通过不断调整样本权重和分类器权重,逐步提高分类器的准确率。 GBDT(Gradient Boosting Decision Tree)是一种基于决策树的集成学习算法,通过不断迭代,每次训练一个新的决策树来纠正前面树的错误,最终得到一个强分类器。 XGBoost是一种基于GBDT算法,它在GBDT的基础上引入了正则化和并行化等技术,使得模型更加准确和高效。 LightGBM是一种基于GBDT算法,它采用了基于直方图的决策树算法和互斥特征捆绑技术,使得模型训练速度更快,占用内存更少,同时也具有较高的准确率。 ### 回答2: adaboost(Adaptive Boosting) 是一种基于不同权重的弱分类器的算法,它通过迭代的方式来逐步提高分类器的准确性。在每轮迭代中,它会调整训练样本的权重,使得前一轮分类错误的样本在当前轮得到更多的关注。最终,通过组合这些弱分类器来构建一个强分类器。其优点在于不易过拟合,但需要耗费大量的时间来训练和预测。 gbdt(Gradient Boosting Decision Tree) 是一种基于决策树的集成学习算法,它通过迭代的方式来提升分类器的准确性。基于训练样本和实际输出的误差进行梯度下降,将它们作为下一个分类器的训练数据。每个分类器都在之前所有分类器得到的残差的基础上进行训练,并且将它们组合成一个最终的分类器。在训练过程中,为了避免过拟合,可以限制决策树的深度等参数,并采用交叉验证等技术。gbdt可以处理缺失数据、不平衡分类和高维度数据等问题,但需要注意过拟合的问题。 xgboost(Extreme Gradient Boosting) 是一种基于决策树的集成学习算法,它在gbdt的基础上引入了正则化项和精细的特征选择,进一步提高了分类器的准确性和效率。通过Hessian矩阵对损失函数进行二阶泰勒展开,引入正则化约束,可以优化损失函数,并通过交叉验证等技术选择最优的超参数。xgboost还支持GPU加速,提高模型训练的速度和效率,但需要更多的计算资源。xgboost在分类、回归和排名任务中表现优异,但需要注意过拟合和计算量的问题。 lightgbm是微软旗下一款高效、快速、分布式的梯度提升框架,也是一种基于决策树的集成学习算法,定位在处理高维度数据和大规模数据集上。lightgbm采用了GOSS(Gradient-based One-Side Sampling)技术和EFB(Exclusive Feature Bundling)技术对数据进行处理,大大减少数据的内存占用和训练时间。同时,还支持并行计算和GPU加速,提高了模型的速度和效率。lightgbm在排序、分类、回归等任务中表现出色,只是对离群值敏感,需要对数据进行预处理。 ### 回答3: Adaboost,Gradient Boosting Decision Tree (GBDT),XGBoostLightGBM都是常见的集成学习算法,它们用于提高模型在复杂数据集上的准确度,并处理复杂数据集上遇到的问题。 Adaboost是一种迭代算法,每次迭代它使用提高错误分类样本的加权值,并降低正确分类样本的加权值,以便让前一个弱分类器无法捕捉并由后续分类器学习。Adaboost弱分类器快速训练和预测,且不需要太多超参数调整,但是它倾向于过度拟合数据,并且实力可能不足以解决大型数据集的问题。 GBDT使用决策树作为弱分类器,将每一棵树的预测结果作为下一棵树的预测输入,最后对所有树的预测结果进行加权求和。GBDT可以很好地处理线性和非线性问题,但是它倾向于过度拟合数据,需要进行精细调整参数,并且需要较长时间的训练时间。 XGBoost结合了GBDT的优势和树的强大性质。它采用了一些优秀的技术,如Boosting树算法,Shrinkage,Column Sampling和Pruning Nodes,以提高模型的性能和降低过拟合风险。XGBoost可以处理大规模数据集和高维数据集,并且速度较快,但需要的资源较多,如内存、计算能力和高质量的数据集。 LightGBMXGBoost的新一代版本,采用了GOI(Gradient-based One-side Sampling)算法和Histogram-based Gradient Boosting方法来加快训练速度和降低内存占用。GOI算法通过对数据进行一侧采样来提高训练速度,而直方图梯度提升方法将节点分裂建模为一个直方图分桶过程,以减少节点分裂的计算成本。LightGBM对大数据集的处理能力很强,速度相对较快,但对于处理小数据集的效果可能不明显。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值