题目大意:将栈里的数依靠队列实现从栈顶到栈底的数从小到大
解题思路:从栈底往上判断看依次是否为相对最大的数,是就不需要靠队列来翻转,不是的话就看这个相对大的数是否在栈顶,是的话就用队列反转,并记下翻转的位置,如果不在栈顶,就把这个数反转到栈顶,在进行上述的那个操作,知道所有的数都从小到大的排列在栈里面。
注意:栈和队列的性质,栈要从从栈顶取数,所以反转一定是某一处到栈顶之间的数,不要随意的反转。
还有scanf() 函数是以回车结束但是本身是可以接受回车的。
#include<stdio.h>
#include<string.h>
int const N = 35;
int a[N], n = 0, pos[N];
void reserve(int i) {
int tmp, j;
for( j = 0; j <= i /2 ; j++)
if(j != i - j) {
tmp = a[j];
a[j] = a[i - j];
a[i - j] = tmp;
}
}
int findmax(int i) {
int max = i;
for ( int j = 0; j <= i; j++) {
if(a[max] < a[j])
max = j;
}
return max;
}
int main() {
int j, k, p;
char ch;
memset(a, 0, sizeof(a));
while(scanf("%d%c", &a[n], &ch) != EOF ) {
if(ch == '\n' ) {
for(j = 0; j <=n; j++) {
if(j == n)
printf("%d\n", a[j]);
else
printf("%d ", a[j]);
}
for(j = n, k = 0 ; j >= 0; j--) {
while(1) {
p = findmax(j);
if(p != j) {
if(p == 0) {
pos[k++] = j;
reserve(j);
}
else {
pos[k++] = p;
reserve(p);
}
}
else
break;
}
}
for (j = 0; j < k; j++)
printf("%d ", n - pos[j] + 1);
printf("0\n");
n = 0;
memset(a, 0, sizeof(a));
}
else
n++;
}
return 0;
}