题目大意:每组数据给出8个数字,可能正可能负。要求最后将这8个数字按照数字绝对值从小到大的排序。排序的规则是让某个数字a邀请另一个数字b跳舞,这样a就可以插到b的左边或是右边,a能邀请b跳舞,则a* b <0 ,且a+b要是素数。题目问给出一组数据问能否通过邀请跳舞来排序,能的话就输出最少的邀请次数,否则输出-1.
解题思路:这题一开始竟然想着dfs,但是后面发现,这样的判断树可以是无限大,因为可以a邀请完b,然后b在邀请a,这样一来一回有可能保持原样。所应该用隐式图遍历,因为这里的不能让相同的状态重复执行,并且要求的是最少次数,隐式图是bfs遍历,正好是先找到终态即路径最短。这里对于一个状态需要从头开始每个数字都考虑一下,能否和其他的数字跳舞,邀请成功后就要选择站到左边还是右边。
注意:插入到某个数的左边,右边情况还需要根据跳舞的两个数的位置来定,要细心。
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
const int MAXN = 1000005;
const int N = 8;
int state[MAXN][N], head[MAXN], next[MAXN], dist[MAXN];
bool cmp (const int& a, const int& b) {
if (abs(a) < abs(b))
return true;
return false;
}
bool is_prime (int n) {
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
int hash (int rear) {
int sum = 0;
for (int i = 0; i < N; i++)
sum = sum * 10 + abs(state[rear][i]);
return sum % MAXN;
}
bool trytoinsert (int rear) {
int p = hash (rear);
int u = head[p];
while (u) {
if (memcmp(state[rear], state[u], sizeof (state[u])) == 0)
return false;
u = next[u];
}
next[rear] = head[p];
head[p] = rear;
return true;
}
//插入到某个数的左边或是右边 p1要插入的数的位置, p2被插队的那个数的位置,dir = 0插入到左边,dir = 1插入到右边
void change (int p1, int p2, int front, int& rear, int dir) {
int temp = state[front][p1];
memcpy (state[rear], state[front], sizeof (state[front]));
if (p1 < p2) {
if (dir == 0) {
for (int i = p1 + 1; i < p2; i++)
state[rear][i - 1] = state[rear][i];
state[rear][p2 - 1] = temp;
} else {
for (int i = p1 + 1;i <= p2; i++)
state[rear][i - 1] = state[rear][i];
state[rear][p2] = temp;
}
}
if (p1 > p2) {
if (dir == 1) {
for (int i = p1; i > p2; i--)
state[rear][i] = state[rear][i - 1];
state[rear][p2 + 1] = temp;
} else {
for (int i = p1; i >= p2; i--)
state[rear][i]= state[rear][i - 1];
state[rear][p2] = temp;
}
}//判断该状态是否重复,不重复就入队
if (trytoinsert(rear)) {
dist[rear] = dist[front] + 1;
rear++;
}
}
int bfs () {
int front, rear;
front = 1;
rear = 2;
memset (dist, 0, sizeof (dist));
memset (head, 0, sizeof(head));
while (front < rear) {
if (memcmp (state[0], state[front], sizeof (state[0])) == 0)
return dist[front];
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (i != j && state[front][i] * state[front][j] < 0 && is_prime (abs (state[front][i]) + abs (state[front][j]))) {
change (i, j, front, rear, 0);
change (i, j, front, rear, 1);
}
}
}
front++;
}
return -1;
}
int main () {
int t = 0;
while (scanf ("%d", &state[1][0]), state[1][0]) {
for (int i = 1; i < N; i++)
scanf ("%d", &state[1][i]);
memcpy(state[0], state[1], sizeof (state[1]));
sort (state[0], state[0] + N, cmp);
printf ("Case %d: %d\n", ++t, bfs());
}
return 0;
}