线性代数
maintain001
事不关己的向前走
展开
-
线性代数笔记 2 - 矩阵的初等变换
矩阵的初等变换初等行变换:对换两行,对换i,j 两行,记作:ri↔rjr_i \harr r_j ri↔rj以一个不等于 k 的数乘某一行中的所有元,第 i 行乘与 k 记作:ri×kr_i \times kri×k把某一行的 n 倍加到另一行对应的元上去,第 j 行的 k 倍加到第 i 行上去,记作:ri+krjr_i+kr_jri+krj将上述定义中的 “行” 换成 “...原创 2019-07-08 13:29:26 · 4670 阅读 · 0 评论 -
线性代数笔记 1 - 行列式及行列式的求解
行列式的三个定义以及七个性质:行列式有三个常见定义:三个性质{1.柯西定义2.逆序数定义3.展开式法定义三个性质\begin{cases}1.柯西定义 \\2.逆序数定义 \\3.展开式法定义 \\\end{cases}三个性质⎩⎪⎨⎪⎧1.柯西定义2.逆序数定义3.展开式法定义柯西的几何法定义(二位平面向量构成的平行四边形,三维向量构成的方体,然后推导到n 阶行列式是由n...原创 2019-07-04 16:02:18 · 1658 阅读 · 1 评论 -
线性代数笔记3 - 向量组的线性相关性
**向量及其线性组合**n 个有次序的数 a1,a2,…,an 所组成的数组称为n 维向量,这 n 个数称为该向量的 n 个分量,第i个数 a称为第i个分量向量组的概念若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组**线性相关性**几个定义线性组合的系数给定向量组 A:a1,a2,…,am,对于任何一组实数 k1,k2,…,km,表达式k1a1+k2a2+…+km...原创 2019-07-10 16:44:00 · 6041 阅读 · 0 评论 -
线性代数手记
初等变换和线性方程组单位矩阵左乘一个矩阵,结果等于这个矩阵本身矩阵的逆左乘矩阵本身,结果等于一个单位矩阵证明一个矩阵是否可逆,看是否可变换单位矩阵要求一个矩阵的逆矩阵,化增广矩阵为单位矩阵求解一个非齐次方程组,增广矩阵化为单位矩阵行阶梯型矩阵呈阶梯状,最简矩阵首列首元为一,其余为零行变换在左乘初等矩阵,列变换在右乘初等矩阵两矩阵等价,这两个矩阵的秩相等,反之也成立用秩来讨论方程组...原创 2019-07-12 09:12:04 · 402 阅读 · 0 评论