自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 资源 (2)
  • 收藏
  • 关注

原创 python在当前路径下创建以时间为命名的指定文件夹

import datetimefrom pandas.tseries.offsets import Daynow_time =datetime.datetime.now().strftime("%Y%m%d")#获取当前时间#now_timeimport ospath = os.getcwd()if not os.path.exists(path + '\\'+ 'result'+now_time): os.mkdir(path + '\\'+ 'result'+now_time)d..

2022-01-14 16:19:17 733

原创 python生成以月份为单位间隔的日期列表

pd.date_range(start='2019/1/1', end='2022/1/2', freq='M').strftime("%Y%m").to_list()

2022-01-12 16:31:32 876

原创 python之df的某一类不足固定位数用0补足

import pandas as pddata = {'hah':[1,2,9], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)dfdf['hah'] = df['hah'].apply(lambda x:str(x).zfill(5))df

2020-07-13 10:19:45 6183

原创 python实现省市热力地图

from pyecharts.charts import Mapfrom pyecharts import options as optsfrom pyecharts.globals import ThemeTypevalue = ['78','17','101','95','36','16','19','23','35']attr = ['福州市','莆田市','泉州市','厦门市','漳州市','龙岩市','三明市','南平市','宁德市']sequence = list(zip(attr.

2020-06-15 16:59:16 2784 1

原创 Python日期格式转换之将 字符串“%Y-%m-%d”转换成“%Y%m%d”

import datetimedd = datetime.datetime.strptime('2020-05-01', "%Y-%m-%d").strftime('%Y/%m/%d')dd

2020-05-27 21:32:41 8021

原创 python之多元时间序列ARIMAX

import pandas as pdimport numpy as npimport matplotlib.pyplot as plt%matplotlib inlineimport statsmodels.api as smfrom pylab import mpl# 画图中文mpl.rcParams['font.sans-serif'] = ['SimHei']mpl.rcParams['axes.unicode_minus'] = Falsedat...

2020-05-11 22:11:08 12115 11

原创 module 'matplotlib.pyplot' has no attribute 'set_xlabel'

plt.plot([y_pred_lin.min(), y_pred_lin.max()], [y_pred_lin.min(), y_pred_lin.max()], 'k--', lw=4)# 中线plt.set_xlabel('Measured')plt.set_ylabel('Predicted')plt.show()改成:plt.plot([y_pred_lin.min(...

2020-05-06 20:30:24 11519

原创 Python之dataframe按照某一列分组并排序,同时加上排名

import pandas as pddata = {'year':['2018','2019','2018','2018','2019','2019','2018','2019'], '数学':[83,90,98,90,88,88,88,89], '英语':[92,89,90,78,83,90,91,95]}df = pd.DataFrame(data...

2020-05-03 12:57:50 17903 2

原创 Python之dataframe修改异常值—按行判断值是否大于平均值的指定倍数,如果是则用左右值替换

serise用数字下标索引import pandas as pddata = {'hah':[1,2,9], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)dfimport numpy as npdef panduan(x): x_mean = np.mean(x) ...

2020-05-02 19:46:50 2833

原创 Python之dataframe修改异常值—按行判断值是否大于平均值的指定倍数,如果是则用均值替换

import pandas as pddata = {'hah':[1,2,9], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)dfimport numpy as npdef panduan(x): x_mean = np.mean(x) print(x_mean) ...

2020-05-02 19:25:28 2724

原创 python之在原来Excel基础上追加写入dataframe数据

import xlrdfrom xlutils.copy import copydef write_excel_xls_append(path, value): index = value.shape[0] # 获取需要写入数据的行数 workbook = xlrd.open_workbook(path) # 打开工作簿 sheets = workbook.shee...

2020-04-30 23:28:08 8083

原创 Python之两个dataframe相除(二)

#可以以一列唯一的标识列作为index# dataframe的每一列除以seriesdata = {'name':['cun1','cun2','cun3'], 'hah':[1,2,2], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)df.set_index(['name'],inpl...

2020-04-26 20:35:14 8348

原创 Python之两个dataframe相除(一)

相除的条件:列名的类型和名称要一致# dataframe dfdata = {'name':['cun1','cun2','cun3'], 'hah':[1,2,2], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)print(df)# dataframe df1data1 = {'...

2020-04-25 18:58:03 14612

原创 Python之 DataFrame每一列除以一个series

# dataframe的每一列除以series,如果想要每一行除以series,则可采用转置Tdata = {'hah':[1,2,2], '数量':[3,2,5], '价格':[10,9,8]}df = pd.DataFrame(data)print(df)from pandas import Series, DataFrameiav = Series([...

2020-04-25 16:51:40 15929

原创 Python日期格式转换之将 字符串“%Y%m%d”转换成“%Y-%m-%d”

例如:将 '201601' 转换成 '2016-01-01'import datetimedd = datetime.datetime.strptime('201601', "%Y%m").strftime('%Y-%m-%d')

2020-04-23 22:38:34 4965 1

原创 python之dataframe删除连续重复数据

import pandas as pddf = pd.DataFrame({'TIME':['0','0','0','1','2','2','4'], 'CATEGORY':['a','b','c','b','b','a','b'], 'VALUE':[0,1,0,0,5,0,4]})aa = df.groupby(['CATEGORY']...

2019-09-07 20:01:46 4526

原创 python之dataframe多条件删除

删除条件:DataBase=test 并且 table < '4'import pandas as pddf = {'course':['mysql','test','test','test','test'],'table':['user','1','2','4','6']}df = pd.DataFrame(df)df.drop(index=(df.loc[(df['course...

2019-09-02 16:28:49 5912

原创 Linux下编辑python(文本)注意事项

通过以下操作,每次编辑vim一个文件是可以显示行号,内容多少就显示行号,同时Tab键为4个空格符vi ~/.vimrc #注意:此处有点号set nu #设置行号set ts=4 #(python称4个缩进)制表符为4个空格符set sw=4 #左右移动默认为4个空格符...

2019-07-03 23:01:31 2987

原创 python之dataframe需要注意的细节

(1)通过as_index=False,groupby的列名'GLBDOMAIN'将不作为索引出现在结果中 agv_1930_df=data_1930_df.groupby(['GLBDOMAIN'],as_index=False)[['EDGE_BW']].mean()(2)按行删除存在缺失数据的行(dataframe) data_1930_df.dr...

2019-07-01 15:34:08 430

原创 Python将多个dataframe写入同一个excel

writer=pd.ExcelWriter("C:/Users/wlt/Desktop/XXX.xls")mon1.to_excel(excel_writer=writer,sheet_name='201901')mon2.to_excel(excel_writer=writer,sheet_name='201902')mon3.to_excel(excel_writer=writer...

2019-06-30 20:51:07 5702 1

原创 python之dataframe的行列转换(将多列转换成多行&将多行转换成多列)

1、将多列转换成多行data=pd.read_excel(path)data=data.set_index(['flag','region'])data=data.stack()data.index=data.index.rename('Time',level=2)data.name='ed_bw'data=data.reset_index()2、将多行转换成多...

2019-06-19 16:03:15 30964

原创 /usr/lib/jvm/java-6-sun/bin/javac: Command not found

install java-devel or java-1.6.0-openjdk-devel

2018-08-22 14:42:54 410

原创 etcd的那点问题

[root@k8s-master01 ssl]# etcdctl member list   client: etcd cluster is unavailable or misconfigured; error #0: x509: certificate signed by unknown authority; error #1: x509: certificate signed by un...

2018-08-13 13:45:17 6117

原创 初始化 Kubernetes 问题(端口占用)

[root@k8s-master01 ~]# kubeadm init --config config.yaml[init] Using Kubernetes version: v1.10.0[init] Using Authorization modes: [Node RBAC][preflight] Running pre-flight checks.[preflight] Some...

2018-08-01 10:52:20 27223 11

原创 简单说:Java中的堆和栈

1、共同点:堆和栈都是Java中用来在RAM中存放数据的地方。 2、区别: (1)栈(Stack):Java中一个线程一个栈区,每一个栈中的元素都是私有的,不被其他栈所访问。栈有后进先出的特点,栈中的数据大小与生存期都是确定的,缺乏灵活性,但是,存取速度比堆要快,仅次于CPU中的寄存器,另外栈中的数据是共享的。在Java中,所有的基本数据类型和引用变量(对象引...

2018-07-24 11:03:22 131

原创 生物信息学研究之数据库链接整理

1、组织表达谱数据:Lncrnamap: http://lncrnamap.mbc.nctu.edu.tw/php/download.phpDeepBase: http://rna.sysu.edu.cn/deepBase/index.phpCircbase: http://circnet.mbc.nctu.edu.tw/2、Lncrna-disease数据库   LncRNA...

2018-07-24 11:02:44 871

原创 Python中LOADDATAINFILE语句导入数据(txt)进入MySQL的一些注意事项

问题:ProgrammingError: (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'ROW 1' at line 1")代码如下:# -*- cod...

2018-07-24 11:01:24 3775

原创 Python数据分析之第六章

(1)基本统计基本统计分析:又叫描述性统计分析,一般统计某个变量的最小值、第一四分位值、中值、第三四分位值、以及最大值。常用的统计指标:计数、求和、平均值、方差、标准差;描述性统计分析函数:describe();常用的统计函数:填写图片摘要(选填)(2)分组分析分组分析:是指根据分组字段,将分析对象划分成不同的部分,以进行对比分析各组之间的差异的一种分析方法;常用的...

2018-07-24 10:59:25 673

原创 Python数据分析之第五章(案例之链接mysql数据库)

(1)安装数据库转到目录:D:\python36\Scriptspip install MySQLClient填写图片摘要(选填)(2)导入TXT文件代码:# -*- coding: utf-8 -*-"""Created on Fri Apr 20 10:22:25 2018@author: LingtingWu"""import os;impor...

2018-07-18 10:29:07 260

原创 Python数据分析之第四章

1、网页数据抓取name age Mon 22 LIlt 223         import urllib.request;from bs4 import BeautifulSoup;response = urllib.request.urlopen('file:///D:/nodepad/Notepad++/uc.html');html=res...

2018-07-18 10:28:39 499

原创 Python数据分析之第三章

1、数据可视化(1)散点图(scatter diagram):是以一个变量为横坐标,另一个变量为纵坐标,利用散点(坐标点)的分布形态反映变量关系的一种图形。(2)散点图绘图函数plot(x, y,'.' ,color=(r, g, b)); # 0-1 的范围plt.xlabel('x轴标签');plt.ylabel('y轴标签');plt.grid(True);参数说...

2018-07-18 10:28:09 592

原创 Python数据分析之第二章

1、数据处理1.1  数据导入(1)数据的存在形式:填写图片摘要(选填) (2)导入CSV文件:使用read_csv函数导入CSV文件;read_csv函数语法:read_csv(file, encoding);示例:from pandas import read_csv;df=read_csv('C://Users//zxysnowy//Desktop//ll...

2018-07-18 10:27:31 390

原创 Python数据分析之第一章

1、python的数据基础定义:按照python规定的格式,将数据的数据类型告知python;赋值:将定义好的数据,传递给变量的过程;变量:数据赋值的对象,我们通过变量去操作数据。2、变量的命名规则(1)变量名可以是字母,数字,下划线组成,首字母不能为数字和下划线(-);(2)大小写敏感,变量a和A是不同的变量;(3)变量名不能为python中的保留字(and or n...

2018-07-18 10:26:39 240

原创 WPSOffice如何设置表格内容上下左右居中

1、选择图片中下拉按钮的其他填写图片摘要(选填)2、进入段落填写图片摘要(选填)3、红色标注的两处保持值一致即可。

2018-07-18 10:24:46 5433

原创 JAVA-BufferedWriter写入文件没有内容

BufferedWriter bw1=new BufferedWriter(new OutputStreamWriter(new                FileOutputStream(new File("D:/MyEclipse/Workspaces/MyEclipse/miRNA.txt"))));bw1.write(similarString);//没有下一句是写入不了的...

2018-07-18 10:22:55 3588

原创 windows中python使用libsvm(一)

1、点击下载libsvmhttps://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles/结果如下:1、添加动态链接文件(.dll文件)(1)确定本机的python版本(2)在下载的libsvm文件夹中,有一个文件夹叫做windows,里面有一个动态链接文件libsvm.dll,这个文件默认是32位系统格式的,如果你的Python是3...

2018-07-18 10:21:40 841

原创 windows系统中python使用libsvm(二)

前言:误以为libsvm只能用在python 32位中,但是,使用的过程中就出现了内存溢出的情况,这是在百度上搜索到的回答:“部分 Windows 版本能够使用的内存是受限的。32位程序最多只能使用不到4G内存。你是不是用了32位系统,或者是在64位系统上装了32位 python。任何一种情况都会导致单个程序所占内存不能超过4G。”所以再去找了资料,发现是可以的libsvm是可以在64位系统中使用...

2018-07-18 10:20:32 665

原创 半监督学习工具svmlin的使用教程

一直想找有没有可以直接使用的半监督学习支持向量机(svm)的工具,但是,找了许久都没有找到,而我使用的编程语言又是Python。后来无意间发现了svmlin工具,它可以利用未标记样本进行分类,但是如何在Python中进行使用呢(我电脑的环境是:Centos 7操作系统,Anaconda 3版本的Python)。以下是使用过程步骤:(1)下载 py-svmlin 文件:svmlin包 里头也有教...

2018-07-18 10:18:48 2570

原创 A + B (1010)

题目描述:                        读入两个小于100的正整数A和B,计算A+B.需要注意的是:A和B的每一位数字由对应的英文单词给出.输入:                        测试输入包含若干测试用例,每个测试用例占一行,格式为"A + B =",相邻两字符串有一个空格间隔.当A和B同时为0时输入结束,相应的结果不要输出.输出

2015-03-11 19:52:57 340

原创 A+B(1003)

题目描述:                        给定两个整数A和B,其表示形式是:从个位开始,每三位数用逗号","隔开。现在请计算A+B的结果,并以正常形式输出。输入:                        输入包含多组数据数据,每组数据占一行,由两个整数A和B组成(-10^9 输出:                       

2015-03-11 19:44:13 366

Nessus试用报告

Nessus是一个功能强大而又易于使用的远程安全扫描器,它不仅免费而且更新极快。Nessus号称是世界上最流行的漏洞扫描程序,全世界有超过75000个组织在使用它。安全扫描器的功能是对指定网络进行安全检查,找出该网络是否存在有导致对手攻击的安全漏洞。该系统被设计为client/sever模式,服务器端负责进行安全检查,客户端用来配置管理服务器端。在服务端还采用了plug-in的体系,允许用户加入执行特定功能的插件,这插件可以进行更快速和更复杂的安全检查。在Nessus中还采用了一个共享的信息接口,称之知识库,其中保存了前面进行检查的结果。Nessus也是渗透测试重要工具之一。为了定位在目标系统上的漏洞,Nessus依赖feeds的格式实现漏洞检查。Nessus官网提供了两种版本:家庭版和专业版。

2018-06-20

AppScan测试报告

AppScan的安装教程和测试报告:IBM AppScan该产品是一个领先的 Web 应用安全测试工具,曾以Watchfire AppScan 的名称享誉业界。Rational AppScan 可自动化 Web 应用的安全漏洞评估工作,能扫描和检测所有常见的 Web 应用安全漏洞,例如 SQL 注入(SQL-injection)、跨站点脚本攻击(cross-site scripting)、缓冲区溢出(buffer overflow)及最新的 Flash/Flex 应用及 Web 2.0 应用曝露等方面安全漏洞的扫描。

2018-06-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除