501A |
/***********************************************
* Author: fisty
* Created Time: 2015/3/20 10:35:58
* File Name : 501A.cpp
*********************************************** */
#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
double _max(int p, int t){
return max(3.*(p/10.), (p - (p / 250. * t)));
}
int main() {
//freopen("in.cpp", "r", stdin);
cin.tie(0);
ios::sync_with_stdio(false);
int a, b, c, d;
cin >> a >> b >> c >> d;
double M = _max(a, c);
double V = _max(b, d);
if(M - V > 1e-6){
cout << "Misha" << endl;
}else if(V - M > 1e-6){
cout << "Vasya" << endl;
}else{
cout << "Tie" << endl;
}
return 0;
}
501B |
/***********************************************
* Author: fisty
* Created Time: 2015/3/20 10:52:36
* File Name : 501B.cpp
*********************************************** */
#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
#define MAX_N 2100
map<string, int> mp;
int num = -1;
map<string, int> s;
int pre[MAX_N];
P ans[MAX_N];
void init(int n){
for(int i = 0;i < n; i++){
pre[i] = i;
}
}
int find(int x){
if(x == pre[x])
return x;
else{
return pre[x] = find(pre[x]);
}
}
void unio(int x, int y){
x = find(x);
y = find(y);
if(x == y) return ;
else pre[y] = x;
}
int ID(string a){
if(s.count(a) == 0){
num++;
s[a] = num;
return num;
}else{
return s[a];
}
}
vector<int> G[MAX_N];
map<int, string> pss;
void dfs(int u,int& v){
if(!G[u].size()){
v = u;
return ;
}
else
for(int j = 0;j < G[u].size(); j++){
dfs(G[u][j], v);
}
}
int main() {
//freopen("in.cpp", "r", stdin);
cin.tie(0);
ios::sync_with_stdio(false);
int n;
cin >> n;
int cnt = 0;
init(MAX_N);
FOR(i, 0, n){
string a, b;
cin >> a >> b;
mp[a] = ID(a);
pss[mp[a]] = a;
cnt = max(cnt, mp[a]);
mp[b] = ID(b);
pss[mp[b]] = b;
cnt = max(cnt, mp[b]);
unio(mp[a], mp[b]);
G[mp[a]].push_back(mp[b]);
}
int _cnt = 0;
for(int i = 0;i <= cnt; i++){
if(find(i) == i){
ans[_cnt].first = i;
int v;
dfs(i, v);
ans[_cnt++].second = v;
}
}
cout << _cnt << endl;
for(int i = 0;i < _cnt; i++){
cout << pss[ans[i].first] << " ";
cout << pss[ans[i].second] << endl;
}
return 0;
}
501C |
题意:给出一幅无向无环图(注意无环) 共有N个点 输入每个点的 度数 和 与这点相邻的所有点的异或和
输出 图中所有的边
根据无环图 可知 图中必有度数为1的点(即只与一个顶点相邻),则它的异或和就是与它相邻顶点的下标,
这样就可以得到一条边,接着 模拟 去掉 之前度数为1的顶点 (相邻顶点度数-1,而异或和则除去去掉顶点的那一部分) 重复上述操作 即可得到所有边
/***********************************************
* Author: fisty
* Created Time: 2015/3/20 21:54:52
* File Name : 501C.cpp
*********************************************** */
#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
#define MAX_N 100000
int n;
P p[MAX_N], _p[MAX_N];
void solve(){
queue<int> Q;
int cnt = 0;
for(int i = 0;i < n; i++){
if(p[i].first == 1){
p[i].first--;
p[p[i].second].first--;
p[p[i].second].second ^= i;
//记录答案
_p[cnt].first = i;
_p[cnt++].second = p[i].second;
if(p[p[i].second].first == 1){
Q.push(p[i].second);
}
}
}
while(Q.size()){
int v = Q.front();Q.pop();
if(p[v].first == 1){
p[v].first--;
p[p[v].second].first--;
p[p[v].second].second ^= v;
_p[cnt].first = v;
_p[cnt++].second = p[v].second;
if(p[p[v].second].first == 1)
Q.push(p[v].second);
}
}
cout << cnt << endl;
for(int i = 0;i < cnt; i++){
cout << _p[i].first << " " << _p[i].second << endl;
}
}
int main() {
//freopen("in.cpp", "r", stdin);
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
FOR(i, 0, n){
cin >> p[i].first >> p[i].second;
}
solve();
return 0;
}
501D |
题意:给两个排列,分别算出是第几小的排列,这两个数字求和以后再模n!得到一个数,输出这个数对应的排列。
很明显的康托/逆康托展开。难点在于如何快速求解康托/逆康托以及模n!上。
在康托展开中,遍历每一位是在所难免的,时间复杂度是O(n),在统计比a[i]小的数字个数的时候显然不能遍历了,可以用树状数组加速,时间复杂度是O(lgn)。这里并不得到的数字加起来,因为可能达到n!,太大了,而是按i!,这样每一位的保存。这一步的总复杂度是O(nlgn)。
对a、b两个排列都进行康托展开,得到一个数组v,这是它们每一位i!的和。
这时候需要进行模n!。
数组v的组成是这样的v[n]*n!+v[n-1]*(n-1)!+…+v[1]*1!+v[0]*0!
可以发现如果v[0]大于1,那么它就可以进位给v[1]了,如果v[1]大于2那么它就可以进位给v[2]了。即v[i+1]+=v[i]/(i+1),v[i]=v[i]%(i+1)。这样就完成了模n!。
最后一步是逆康托展开。
显然数组v的每个数v[i]就是它模i!的商。所以问题就在于如何快速找到有k个比它小的数字的数是几。这一步使用二分解决。
/***********************************************
* Author: fisty
* Created Time: 2015/3/21 9:47:25
* File Name : 501D.cpp
*********************************************** */
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstring>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <algorithm>
using namespace std;
#define Debug(x) cout << #x << " " << x <<endl
#define Memset(x, a) memset(x, a, sizeof(x))
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef pair<int, int> P;
#define FOR(i, a, b) for(int i = a;i < b; i++)
#define MAX_N 210000
LL n;
int p[MAX_N];
int q[MAX_N];
int bit[MAX_N];
void add(int i,int x){
while(i <= MAX_N){
bit[i] += x;
i += (i & (-i));
}
}
LL sum(int i){
int sum = 0;
while(i > 0){
sum += bit[i];
i -= (i & (-i));
}
return sum;
}
void solve(){
//LL porm = (ord(p) + ord(q)) % fac(n);
//根据porm求排列
int pq[MAX_N];
Memset(pq, 0);
for(int i = n;i >= 1; i--){
pq[i] += p[i] + q[i];
if(pq[i] >= (n-i+1)){
pq[i] -= (n-i+1);
pq[i-1]++;
}
}
int ans[MAX_N];
Memset(ans, 0);
Memset(bit, 0);
for(int i = 1;i <= n; i++) add(i, 1);
int l, r, m;
for(int i = 1;i <= n; i++){
l = 1, r = n;
while(l <= r){
m = (l + r) >> 1;
if(sum(m) >= pq[i]+1) r = m - 1;
else l = m + 1;
}
add(l, -1);
pq[i] = l;
}
for(int i = 1;i < n; i++){
cout << pq[i]-1 << " ";
}
cout << pq[n]-1 << endl;
}
int main(){
//freopen("in.cpp", "r", stdin);
cin.tie(0);
ios::sync_with_stdio(false);
cin >> n;
int x;
Memset(bit, 0);
FOR(i, 1, n+1){
cin >> x;
x++;
p[i] = x - 1 - sum(x);
add(x, 1);
}
Memset(bit, 0);
FOR(i, 1, n+1){
cin >> x;
x++;
q[i] = x - 1 - sum(x);
add(x, 1);
}
solve();
return 0;
}