题目地址:POJ 2516
我晕啊。。。这题一上来就想到了对每种货物分开求。。但是马上就放弃了。。感觉这样求50次费用流太耗时。。后来就果断拆点,拆了好长时间,一直TLE。。即使降到了2600个点也TLE。。然后又想起了这个分开求的方法,又突然觉得100个点的费用流几乎不费什么时间。。最多也只是求50次而已,还是可以试试的。。于是一试居然还真过了。。。
说到这里,思路应该已经知道了吧。就是对每种货物分开求,因为每种货物是相互独立的。每一次的建图思路就是:
源点与供应商连边,流量权值为供应商这种货物的供应量,费用权值为0,汇点与店家连边,流量权值为店家所需要的这种货物的量,费用权值为0。然后供应商与相应的店家相连,费用权值为相应的输入的值,流量权值为INF。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=300;
int head[maxn], source, sink, cnt, flow, cost, sum, mpn[60][60], mpm[60][60];
int d[maxn], vis[maxn], cur[maxn], f[maxn];
struct node
{
int u, v, cap, cost, next;
} edge[3000000];
void add(int u, int v, int cap, int cost)
{
edge[cnt].v=v;
edge[cnt].cap=cap;
edge[cnt].cost=cost;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].v=u;
edge[cnt].cap=0;
edge[cnt].cost=-cost;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int spfa()
{
memset(vis,0,sizeof(vis));
memset(d,INF,sizeof(d));
deque<int>q;
q.push_back(source);
d[source]=0;
cur[source]=-1;
f[source]=INF;
while(!q.empty())
{
int u=q.front();
q.pop_front();
vis[u]=0;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
if(d[v]>d[u]+edge[i].cost&&edge[i].cap)
{
d[v]=d[u]+edge[i].cost;
f[v]=min(f[u],edge[i].cap);
cur[v]=i;
if(!vis[v])
{
if(!q.empty()&&d[v]<d[q.front()])
{
q.push_front(v);
}
else
q.push_back(v);
vis[v]=1;
}
}
}
}
if(d[sink]==INF) return 0;
flow+=f[sink];
cost+=d[sink]*f[sink];
for(int i=cur[sink]; i!=-1; i=cur[edge[i^1].v])
{
edge[i].cap-=f[sink];
edge[i^1].cap+=f[sink];
}
return 1;
}
int mcmf()
{
flow=cost=0;
while(spfa()) ;
if(flow<sum)
return -1;
else
return cost;
}
int main()
{
int n, m, k, i, j, x, h, ans, flag;
while(scanf("%d%d%d",&n,&m,&k)!=EOF&&n&&m&&k)
{
ans=0;
flag=0;
source=0;
sink=n+m+1;
for(i=1; i<=n; i++)
{
for(j=1; j<=k; j++)
{
scanf("%d",&mpn[i][j]);
}
}
for(i=1; i<=m; i++)
{
for(j=1; j<=k; j++)
{
scanf("%d",&mpm[i][j]);
}
}
for(h=1; h<=k; h++)
{
memset(head,-1,sizeof(head));
cnt=0;
sum=0;
for(i=1; i<=n; i++)
{
add(i+m,sink,mpn[i][h],0);
sum+=mpn[i][h];
for(j=1;j<=m;j++)
{
scanf("%d",&x);
add(j,i+m,INF,x);
}
}
if(flag)
continue ;
for(i=1;i<=m;i++)
{
add(source,i,mpm[i][h],0);
}
int y=mcmf();
//printf("%d\n",y);
if(y==-1)
{
flag=1;
}
else
ans+=y;
}
if(flag)
printf("-1\n");
else
printf("%d\n",ans);
}
return 0;
}