Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
判断平衡二叉树,常规的写法是两个递归,一个递归用于计算所有节点,另一个递归用于计算每一个节点的深度。
新的方法是直接使用递归计算深度,但是在计算深度之前需要判断左右子树的深度之差是否大于1,如果是,说明不符合要求,以-1标记。递归下来的时候,只要计算到left、right或者当前的abs(left-right)>1的时候就表明子树或者自己本身不符合平衡二叉树,递归返回。
class Solution {
public:
bool isBalanced(TreeNode* root) {
return isBalancedTree(root) >=0;
}
int isBalancedTree(TreeNode* root){
if(!root) return 0;
int left=isBalancedTree(root->left);
int right=isBalancedTree(root->right);
//判断不符合,提前退出
//类似if(abs(left-right)>1) return false;这句
//也就是这个条件不符合就return false
//符合这个条件了,还需要继续判断后面的
if(left<0 || right<0 || abs(left-right)>1) return -1;
return left>right?(left+1):(right+1);
}
// bool isBalanced(TreeNode* root) {
// if(root==NULL) return true;
// //只有一个bool,深度如何可以传递
// //事实证明需要另开一个函数
// int left=getDepth(root->left);
// int right=getDepth(root->right);
// if(abs(left-right)>1) return false;
// //于是这种还是利用了双循环
// return isBalanced(root->left) && isBalanced(root->right);
// }
// int getDepth(TreeNode* root){
// int depth=0;
// if(root){
// int left=getDepth(root->left);
// int right=getDepth(root->right);
// return left>right?(left+1):(right+1);
// }
// return depth;
// }
};