LeetCode | Balanced Binary Tree

100 篇文章 0 订阅
28 篇文章 0 订阅

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

判断平衡二叉树,常规的写法是两个递归,一个递归用于计算所有节点,另一个递归用于计算每一个节点的深度。

新的方法是直接使用递归计算深度,但是在计算深度之前需要判断左右子树的深度之差是否大于1,如果是,说明不符合要求,以-1标记。递归下来的时候,只要计算到left、right或者当前的abs(left-right)>1的时候就表明子树或者自己本身不符合平衡二叉树,递归返回。

class Solution {
public:
    bool isBalanced(TreeNode* root) {
        return isBalancedTree(root) >=0;
    }

    int isBalancedTree(TreeNode* root){
        if(!root) return 0;

        int left=isBalancedTree(root->left);
        int right=isBalancedTree(root->right);

        //判断不符合,提前退出
        //类似if(abs(left-right)>1) return false;这句
        //也就是这个条件不符合就return false
        //符合这个条件了,还需要继续判断后面的
        if(left<0 || right<0 || abs(left-right)>1) return -1;

        return left>right?(left+1):(right+1);
    }

    // bool isBalanced(TreeNode* root) {
    //     if(root==NULL) return true;
    //     //只有一个bool,深度如何可以传递
    //     //事实证明需要另开一个函数
    //     int left=getDepth(root->left);
    //     int right=getDepth(root->right);

    //     if(abs(left-right)>1) return false;
    //     //于是这种还是利用了双循环
    //     return isBalanced(root->left) && isBalanced(root->right);
    // }

    // int getDepth(TreeNode* root){
    //     int depth=0;
    //     if(root){
    //         int left=getDepth(root->left);
    //         int right=getDepth(root->right);
    //         return left>right?(left+1):(right+1);
    //     }
    //     return depth;
    // }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值