bzoj 3309 DZY Loves Math

记录一下思路,蛮好的数论+筛题,顺便熟悉一下数学公式

i=1aj=1bf(gcd(i,j))=di=1a/dj=1b/df(d)[gcd(i,j)=1]=df(d)i=1a/dj=1b/dxgcd(i,j)μ(x)=df(d)xμ(x)adxbdx=DaDbDxDf(x)μ(D/x)

我们令
g(n)=xnf(n/x)μ(x)

这里的形式称为 Dirichlet卷积
可以用 O(nlog(n)) 的复杂度求出来

int f[MAXN],mu[MAXN],g[MAXN]={0};
void calc(int n)
{    
    for (int i=1;i*i<=n;i++)
        for (int j=i;i*j<=n;j++)
            if(j==i)g[i*j]+=f[i]*mu[i];
            else g[i*j]+=f[i]*mu[j]+f[j]*mu[i];
}

但是题目要求我们用线性的时间算出 g .

问题变成了如何高效的求出g(n),不失一般性,我们首先来看看 n=pk ,只有当 x=p x=1 时, μ 函数不等于0,所以这种情况下 g(n)=1 ,注意,规定 μ(1)=1 。当 n 的素因子不止一个的时候,假设不能产生f的素因子组成的集合为 A ,由于在这个集合里取值的个数会改变整体μ函数的正负性,且正好符合 (11)|A| 的二项式展开式,所以总体为0,因此如果 n 的质因子分解中两个不同素数的幂不一样,那么g(n)=0,接下来我们考虑所有质因子的幂次都相同的情况,因为对 n 的每一个质因子,μ函数决定了 x 只能取一个或者不去,当全部取走的时候f(n/x)=k1假设幂次为k,分解出的质因子个数为num,否则的话 f(n/x)=k ,用数学公式表示出来如下

i=0num1(numi)k(1)i+(k1)(1)num=(1)num+1

所以我们需要用线性筛判断数 n 的所有质因子的幂是否相等,回忆线性筛,我们用n的最小素因子晒去 n ,所以我们记录最小素因子的幂次即可。

然而还没有完。。。
我们需要O(n)的复杂度回答询问,这里利用了 n/x 的取值只有 O(n) 数量级的性质,所以预处理出 g <script type="math/tex" id="MathJax-Element-59">g</script>的前缀和以便计算,由于这个问题非常经典,下面给出代码。

for(int i=1,j;i<=n;i=j+1){  
    j=min(n/(n/i),m/(m/i));  
    ans+=(f[j]-f[i-1])*(Sum(n/i,m/i));  
} 

题目代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <time.h>
#include <cmath>
using namespace std;
#define N 10000000
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;

int num[N+10],g[N+10],prime[N+10],pre[N+10];
bool check[N+10];

void init()
{
    memset(check,false,sizeof(check));
    int tot=0;
    for(int i=2;i<=N;i++)
    {
        if(!check[i]){
            prime[tot++]=i;
            num[i]=1;
            g[i]=1;
            pre[i]=1;
        }
        for(int j=0;j<tot;j++)
        {
            if((ll)i*prime[j]>N)
                break;
            check[i*prime[j]]=1;
            if(i%prime[j]==0)
            {
                num[i*prime[j]]=num[i]+1;
                if(pre[i]==1||(num[i*prime[j]]==num[pre[i]]))
                    g[i*prime[j]]= (pre[i]==1)?1:-g[pre[i]];
                else
                    g[i*prime[j]]=0;
                pre[i*prime[j]]=pre[i];

            }
            else{
                num[i*prime[j]]=1;
                if(num[i]==1)
                    g[i*prime[j]]=-g[i];
                else
                    g[i*prime[j]]=0;
                pre[i*prime[j]]=i;
            }
        }
    }
    g[1]=0;
    for(int i=2;i<=N;i++)
        g[i]+=g[i-1];
}


int main()
{
#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
#endif

    int T,a,b,pos;
    ll ans;

    init();

    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&a,&b);
        if(a>b)
            swap(a,b);
        ans=0;
        for(int i=1;i<=a;i=pos+1)
        {
            pos=min(a/(a/i),b/(b/i));
            ans+=(ll)(a/i)*(b/i)*(g[pos]-g[i-1]);
        }
        printf("%lld\n",ans);
    }


    return 0;
}

外日,真TMD的累,突然对写博客的人产生了敬佩感。。。尤其是写数学公式的。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值