记录一下思路,蛮好的数论+筛题,顺便熟悉一下数学公式
我们令
这里的形式称为 Dirichlet卷积
可以用 O(nlog(n)) 的复杂度求出来
int f[MAXN],mu[MAXN],g[MAXN]={0};
void calc(int n)
{
for (int i=1;i*i<=n;i++)
for (int j=i;i*j<=n;j++)
if(j==i)g[i*j]+=f[i]*mu[i];
else g[i*j]+=f[i]*mu[j]+f[j]*mu[i];
}
但是题目要求我们用线性的时间算出 g .
问题变成了如何高效的求出
所以我们需要用线性筛判断数 n 的所有质因子的幂是否相等,回忆线性筛,我们用
然而还没有完。。。
我们需要
for(int i=1,j;i<=n;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(f[j]-f[i-1])*(Sum(n/i,m/i));
}
题目代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <time.h>
#include <cmath>
using namespace std;
#define N 10000000
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
int num[N+10],g[N+10],prime[N+10],pre[N+10];
bool check[N+10];
void init()
{
memset(check,false,sizeof(check));
int tot=0;
for(int i=2;i<=N;i++)
{
if(!check[i]){
prime[tot++]=i;
num[i]=1;
g[i]=1;
pre[i]=1;
}
for(int j=0;j<tot;j++)
{
if((ll)i*prime[j]>N)
break;
check[i*prime[j]]=1;
if(i%prime[j]==0)
{
num[i*prime[j]]=num[i]+1;
if(pre[i]==1||(num[i*prime[j]]==num[pre[i]]))
g[i*prime[j]]= (pre[i]==1)?1:-g[pre[i]];
else
g[i*prime[j]]=0;
pre[i*prime[j]]=pre[i];
}
else{
num[i*prime[j]]=1;
if(num[i]==1)
g[i*prime[j]]=-g[i];
else
g[i*prime[j]]=0;
pre[i*prime[j]]=i;
}
}
}
g[1]=0;
for(int i=2;i<=N;i++)
g[i]+=g[i-1];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T,a,b,pos;
ll ans;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
if(a>b)
swap(a,b);
ans=0;
for(int i=1;i<=a;i=pos+1)
{
pos=min(a/(a/i),b/(b/i));
ans+=(ll)(a/i)*(b/i)*(g[pos]-g[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}
外日,真TMD的累,突然对写博客的人产生了敬佩感。。。尤其是写数学公式的。。。