mini-imagenet阿里云网盘分享 「mini-imagenet」,点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。链接:https://www.aliyundrive.com/s/sPddLpGHy7S
Fréchet Inception Distance(FID) 摘自:https://www.cnblogs.com/gaona666/p/12376796.htmlFréchet Inception Distance(FID)计算 IS 时只考虑了生成样本,没有考虑真实数据,即 IS 无法反映真实数据和样本之间的距离,IS 判断数据真实性的依据,源于 Inception V3 的训练集 ------ ImageNet,在 Inception V3 的“世界观”下,凡是不像 ImageNet 的数据,都是不真实的,都不能保证输出一个 sharp 的 prediti
如何解决神经网络训练时loss不下降的问题 转载自: https://blog.ailemon.me/2019/02/26/solution-to-loss-doesnt-drop-in-nn-train/如何解决神经网络训练时loss不下降的问题文章作者AI柠檬博主发布日期2019-02-26如何解决神经网络训练时loss不下降的问题有2条评论浏览量: 148,695(在苹果系统下,如果文章中的图片不能正常显示,请升级Safari浏览器到最新版本,或者使用Chrome、Firefox浏览器打开。)当我们训练一个神经网络模型的时候,
李宏毅2021-GAN学习笔记 Discriminator G∗=argminDiv(PG,Pdata)G^*=arg min Div(P_G,P_{data})G∗=argminDiv(PG,Pdata)real data sampleed from PdataP_{data}Pdata,general data sampled from PGP_GPGObjective Function For DLoss function:V(G,D)=Ey∼Pdata[logD(y)]+Ey∼PG[log(1−D(y))]V(
Could not load dynamic library ‘libcudart.so.11.0‘ 原文来自:https://github.com/tensorflow/tensorflow/issues/45930#issuecomment-770342299我这里大致翻译以下。I has same problem ,and solved this problem by those step.我遇到了同样的问题,用以下步骤解决First, find out where the “libcudart.so.11.0” is找出libcudart.so.11.0所在If you lost oth
tf2.0 -- InvalidArgumentError: Incompatible shapes 今天遇到了一个很奇怪的问题,这种问题一般是由于已经保存的加载之后,与要使用的数据shape不一致导致的。tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [50000,10] vs. [50000,100]这是我的代码:# (x, y), (x_test, y_test) = datasets.cifar100.load_data()(x, y), (x_test, y_test)
常见的梯度超参数更新方法 常见的梯度超参数更新方法Adagrad :Root Mean Squareθi1=θi0−ησi0gi0σi0=(gi0)2=|gi0|\theta_i^1 =\theta_i^0-\tfrac{\eta}{\sigma_i^0}g_i^0 \\\sigma_i^0 = \sqrt{(g_i^0)^2}=|g_i^0|θi1=θi0−σi0ηgi0σi0=(gi0)2=|gi0|θi2=θi1−ησi1gi1σi1=12[(gi1)2+(gi1)2]\theta_i^2 =\
损失函数的最值和鞍点的判断 L(θ)L(\theta)L(θ) arond θ\thetaθ = θ′\theta'θ′能用下面的公式逼近:L(θ)≈L(θ′)+(θ−θ′)Tg+12(θ−θ′)TH(θ−θ′)L(\theta)\approx L(\theta ')+(\theta-\theta')^Tg+\tfrac{1}{2}(\theta-\theta')^TH(\theta-\theta')L(θ)≈L(θ′)+(θ−θ′)Tg+21(θ−θ′)TH(θ−θ′)梯度ggg 是一个矢量:g=∇L(θ′)gi=∂L(θ
tensorflow 限制GPU显存的使用 tensorflow 1 里使用这部分限制显存gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)config=tf.ConfigProto(gpu_options=gpu_options)session = tf.Session(config=config)在tensorflow 2里使用这部分限制显存gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memor
L1正则化和L2正则化 摘自:https://www.cnblogs.com/skyfsm/p/8456968.html【深度学习】L1正则化和L2正则化在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况。正则化是机器学习中通过显式的控制模型复杂度来避免模型过拟合、确保泛化能力的一种有效方式。如果将模型原始的假设空间比作“天空”,那么天空飞翔的“鸟”就是模型可能收敛到的一个个最优解。在施加了模型正则化后,就好比将
PCA学习笔记 PCA的意义机器学习中的主要问题:维度灾难 PCA:在力求数据信息丢失最少的原则下,对高纬度的变量空间降维 ,即研究指标体系的少数几个线性组合,并且这几个线性组合所构成的综合指标将尽可能多的保留信息。这些综合指标就称为主成分 。PCA推导该X的协方差矩阵 为由于此矩阵为非负定的对称阵,则有利用线性代数的知识可得,比存在正交矩阵U,使得 : 其中P个特征值,假设大小是降序。而U恰好是由特征根相对应的特征向量所组成的正交阵这里,由U的第一列元素所工程为原始变量的线性组合有最大的方差 。 (证
关于感知学习模型机中空间任一点到超平面的距离公式的推导过程 摘自: https://blog.csdn.net/amyaguang/article/details/46043885?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-2.cha
k邻近算法(KNN)实例 文章转载自:https://www.cnblogs.com/angle6-liu/p/10416736.html一 k近邻算法原理k近邻算法是一种基本分类和回归方法.原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。如上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。这也就是我们的目的,来了一个新的数据点,我
java 8 lamda Stream的Collectors.toMap 参数 摘自:https://www.cnblogs.com/ampl/p/10904306.htmljava 8 lamda Stream的Collectors.toMap 参数使用toMap()函数之后,返回的就是一个Map了,自然会需要key和value。toMap()的第一个参数就是用来生成key值的,第二个参数就是用来生成value值的。第三个参数用在key值冲突的情况下:如果新元素产...
macOS开启高性能模式 文章摘自:https://cloud.tencent.com/developer/article/1594591macOS开启高性能模式2020-03-05阅读 2400性能模式会更改您的 Mac 的系统参数。这些更改会更好地利用您的硬件来满足服务器应用程序的要求。装有 macOS Server 且需要运行高性能服务的 Mac 可以开启性能模式,以便将更多系统资源专用于服务器应用程序。...
mysql通过“延迟关联”进行limit分页查询优化的一个实例 转载自:https://blog.csdn.net/iteye_1914/article/details/82675158最近在生产上遇见一个分页查询特别慢的问题,数据量大概有200万的样子,翻到最后一页性能很低,差不多得有4秒的样子才能出来整个页面,需要进行查询优化。第一步,找到执行慢的sql,如下:SELECTshotel_id as hotelId,mroom_type_id a...
Java try catch语句块中try()的括号中代码作用 摘自:https://blog.csdn.net/qq_27092581/article/details/92839049应用场景:当我们使用带资源的try语句时,使用finally也许会造成一个异常被覆盖的问题,即try语句块中会抛出某个异常,执行finally语句块中跑出了同样的异常,这样的话就会导致原有的异常会丢失,转而抛出的finally语句中的异常。这时我们可以使用带资源的try语句...
不要在 foreach 循环里进行元素的 remove/add 操作。remove 元素请使用 Iterator 方式,如果并发操作,需要对 Iterator 对象加锁 摘自:https://www.cnblogs.com/DDiamondd/p/11307825.html11.【强制】不要在 foreach 循环里进行元素的 remove/add 操作。remove 元素请使用Iterator 方式,如果并发操作,需要对 Iterator 对象加锁。正例:List<String> list = new ArrayList<>()...