原理:在 k 位数据码之外增加 1 位校验位,
使 k+1 位码字中取值为 1 的位数保持为
偶数(偶校验)或 奇数(奇校验)
设x=(加, x0 x1…xn-1 )是一个n位字, 则奇校验位C定义为
C = x0⊕x1⊕…⊕xn-1
式中⊕代表按位只有当x中包含有奇数个1时,C=0。
同理,偶校验位C定义为
C = x0⊕x1⊕…⊕xn-1
即x中包含偶数个1时,才使C=0。
发送: x0 x1…xn-1C (算出C加到需发送字的后面)
接收: x0 ' x1 ' …xn-1 ' C '
计算:F=x'0⊕x'1⊕…⊕x'n-1⊕C '
结果:若F=1,意味着收到的信息有错;
若F=0,表明x字传送正确。
特点:
奇偶校验可提供单(奇数)个错误检测,
但无法检测多(偶数)个错误,
更无法识别错误信息的位置及纠正错误。