tensorflow
一米半
这个作者很懒,什么都没留下…
展开
-
tensorflow安装
教程网上很全,主要说一下注意事项: 1如果只用cpu,直接pip install tensorflow,官方文档写了已经支持python3.6了。 2.如果要用gpu,输入pip install tensorflow-gpu,即可。此外gpu还要安装cuda和cudnn,需要注意版本,运行import tensorflow会有提示。 3.pip操作安装了的tensorflow会有提示:Your原创 2017-12-13 15:10:27 · 14289 阅读 · 2 评论 -
充分理解 name / variable_scope
这篇文章写得非常好:https://blog.csdn.net/Jerr__y/article/details/70809528 总结几个点: 1、tf.Variable在命名冲突的时候会自动重命名,如命名为w,第二个机会变成w_1。tf.placeholder也会,tf.get_variable则不会。 2、tf.name_scope是不会对tf.get_variable有影响的,对tf....原创 2018-06-10 15:40:47 · 203 阅读 · 0 评论 -
Variable Sequence Lengths in TensorFlow
翻译这篇文章:https://danijar.com/variable-sequence-lengths-in-tensorflow/ 大意是因为在用rnn做nlp任务的时候,不同的句子长度不一样,如果我们使用static_rnn我们需要固定最大句子长度,这其实是不合适的。因为在句子实际长度m小于最大长度n的时候,我们实际上希望得到m时刻的输出,而不是n时刻的输出(因为m时刻句子已经结束),但是...翻译 2018-06-10 15:17:14 · 1391 阅读 · 0 评论 -
batch Normalization层
大致是对每层做归一化,能加快收敛速度。 主要看这篇博客:https://www.jianshu.com/p/0312e04e4e83 原理看这篇:https://blog.csdn.net/hjimce/article/details/50866313 其中会用到滑动平均:可以看我之前的这篇博客。...原创 2018-05-29 14:58:29 · 1223 阅读 · 0 评论 -
tf.nn.embedding_lookup
tf.nn.embedding_lookup( params, ids, partition_strategy=’mod’, name=None, validate_indices=True, max_norm=None ) 这个函数的意思就是按照ids查找params里面的vector然后输出。 比如:import num...原创 2018-05-24 12:25:12 · 556 阅读 · 0 评论 -
tf. clip_by_global_norm
下面这两篇博客就这个问题讲的很详细: https://blog.csdn.net/u010814042/article/details/76154391 https://blog.csdn.net/u013713117/article/details/56281715 下面的代码是双向lstm+crf计算损失的部分,但是思路是通用的。with tf.variable_scope('crf...原创 2018-05-25 11:42:12 · 2819 阅读 · 0 评论 -
tensorflow.data.dataset
这篇博客讲的很清楚。 注:buffer_size表示在shuffle时缓冲池的大小,影响随机顺序。 The buffer_size in Dataset.shuffle() can affect the randomness of your dataset, and hence the order in which elements are produced. ...原创 2018-02-25 18:55:20 · 219 阅读 · 0 评论 -
tf.train.ExponentialMovingAverage用法和说明
在这篇博客中对tf.train.ExponentialMovingAverage讲的很清楚,这里主要补充几点说明: 第一点: 当程序执行到 ema_op = ema.apply([w]) 的时候,如果 w 是 Variable, 那么将会用 w 的初始值初始化 ema 中关于 w 的 ema_value,所以 emaVal0=1.0。如果 w 是 Tensor的话,将会用 0.0 初始化...原创 2018-02-18 18:49:44 · 2645 阅读 · 1 评论 -
tf.identity 和 tf.control_dependencies的用法
关于 tf.control_dependencies(具体参考博客,也是本文主要参考对象): tf.control_dependencies(control_inputs)设计是用来控制计算流图的,给图中的某些计算指定顺序。比如:我们想要获取参数更新后的值,那么我们可以这么组织我们的代码。opt = tf.train.Optimizer().minize(loss)with tf.c...原创 2018-02-18 18:01:26 · 1132 阅读 · 0 评论 -
tf.train.exponential_decay(学习率衰减)
#!/usr/bin/env python3# -*- coding: utf-8 -*-''' 学习率较大容易搜索震荡(在最优值附近徘徊),学习率较小则收敛速度较慢, 那么可以通过初始定义一个较大的学习率,通过设置decay_rate来缩小学习率,减少迭代次数。 tf.train.exponential_decay就是用来实现这个功能。'''__author__ = 'Zhan...原创 2018-02-18 15:43:57 · 3620 阅读 · 1 评论 -
命令行参数
之前用过argparse这个库来接收命令行参数,代码样例如下:parser = argparse.ArgumentParser(description='BiLSTM-CRF for Chinese NER task')#--代表可选参数parser.add_argument('--train_data', type=str, default='data_path', help='trai...原创 2018-06-10 15:54:36 · 291 阅读 · 0 评论