机器学习
文章平均质量分 77
京局京段蓝白猪
这个作者很懒,什么都没留下…
展开
-
【每日学习】深度学习相关知识
1、【2019年11月8日】过拟合与欠拟合过拟合和欠拟合是常见的机器学习概念,这里写一下,为后面的BN层学习奠定基础。我们可以用下面的图来表示:最左边为欠拟合,可以看出拟合程度不是很好,经常会造成训练中精度不高。最右边为过拟合,曲线很好拟合了样本,以至于噪声数据也被拟合,经常会造成实际测试精度不高。中间的就拟合的非常好,即保证了正常样本的拟合,又确保了噪声数据不会被拟合。(1)欠拟...原创 2019-11-09 14:30:29 · 534 阅读 · 0 评论 -
【转载】一篇搞定机器学习面试
序言本文尽可能的不涉及到繁杂的数学公式,把面试中常问的模型核心点,用比较通俗易懂但又不是专业性的语言进行描述。希望可以帮助大家在找工作时提纲挈领的复习最核心的内容,或是在准备的过程中抓住每个模型的重点。实战环境说明:Python 2.7 Sklearn 0.19.0 graphviz 0.8.1 决策树可视化一、决策树1.1 原理顾名思义,决策树就是用一棵树来表示我们的整...转载 2018-07-09 15:47:23 · 10570 阅读 · 1 评论 -
准确率、精确率、召回率、F1值、ROC/AUC整理笔记
对于二分类问题,机器预测的和实际的还是会有所偏差,所以我们引入以下几个概念来评价分类器的优良。一、TP、TN、FP、FN概念首先有关TP、TN、FP、FN的概念。大体来看,TP与TN都是分对了情况,TP是正类,TN是负类。则推断出,FP是把错的分成了对的,而FN则是把对的分成了错的。(我的记忆方法:首先看第一个字母是T则代表分类正确,反之分类错误;然后看P,在T中则是正类,若在F中则实际为...原创 2018-07-09 10:11:38 · 139168 阅读 · 7 评论 -
各类比赛数据集
本篇整理了几个比赛用的数据集,方便大家使用,提供百度云链接不定期更新,如果链接出现问题,请在评论区告知我,我会及时补链接【注意】所有数据仅限于科研所用,请勿用于商业用途!【2019.07.04更新】增加ICDAR 2015、天池全球数据智能大赛数据【Kaggle比赛】1.Kaggle-猫狗大战链接:https://pan.baidu.com/s/1cnnZXytaaC...原创 2018-03-07 10:34:51 · 16782 阅读 · 90 评论 -
Python实现K-Means聚类算法
一、算法简介1、K-Means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。2、K-Means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。3、算法采用误差平方和准则函数作为聚类准则函数。二、算法过程(1)从n个向量对象任意...原创 2017-02-27 16:43:29 · 8502 阅读 · 0 评论