LeetCode 刷题笔记 之 Best Time to Buy and Sell Stock with Cooldown

题目如下:

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

解答如下:

第一感觉还是要用动态规划来写。那么加上cooldown的话就有点意思了。假设维护两个数组,sell[i] 表示第i天未持股,buy[i]表示第i天持股;则状态转移方程:

sell[i]=max{buy[i-1]+price[i],sell[i-1]} 未持股,那么就是今天卖了或者是没动作中间的较大者

buy[i]=max{sell[i-2]-price[i],buy[i-1]}持股,那么就是前天卖完之后今天买了或者是没动作之间的较大者

代码:

 

class Solution {

public int maxProfit(int[] prices) { if (prices == null || prices.length == 0) return 0; int[] sell = new int[prices.length]; int[] buy = new int[prices.length]; sell[0] = 0; buy[0] = -prices[0]; for (int i = 1; i < prices.length; ++i) { sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]); buy[i] = Math.max(buy[i - 1], (i > 1 ? sell[i - 2] : 0) - prices[i]); } return sell[prices.length - 1]; } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值