题目如下:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:
- You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
- After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:
prices = [1, 2, 3, 0, 2] maxProfit = 3 transactions = [buy, sell, cooldown, buy, sell]
解答如下:
第一感觉还是要用动态规划来写。那么加上cooldown的话就有点意思了。假设维护两个数组,sell[i] 表示第i天未持股,buy[i]表示第i天持股;则状态转移方程:
sell[i]=max{buy[i-1]+price[i],sell[i-1]} 未持股,那么就是今天卖了或者是没动作中间的较大者
buy[i]=max{sell[i-2]-price[i],buy[i-1]}持股,那么就是前天卖完之后今天买了或者是没动作之间的较大者
代码:
class Solution {
public int maxProfit(int[] prices) { if (prices == null || prices.length == 0) return 0; int[] sell = new int[prices.length]; int[] buy = new int[prices.length]; sell[0] = 0; buy[0] = -prices[0]; for (int i = 1; i < prices.length; ++i) { sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]); buy[i] = Math.max(buy[i - 1], (i > 1 ? sell[i - 2] : 0) - prices[i]); } return sell[prices.length - 1]; } }