题目:
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
思路:
首先附上Unique Paths I的链接。这道题主要就是路径中加了障碍物。如果有障碍物,则当前的d[i][j] = 0
, 然后就和Unique Paths I一样的做法就可以了。(注意初始化时,如果第一行或者第一列有一个位置出现障碍物,则后面的左右位置都不能到达,d[i][j] = 0
。)
C++代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int d[100][100];
for(int i=0;i<obstacleGrid.size();i++)
{
if(obstacleGrid[i][0] == 0)
{
d[i][0] = 1;
}
else
{
d[i][0] = 0;
for(int j = i+1;j<obstacleGrid.size();j++)
d[j][0] = 0;
break;
}
}
for(int i=0;i<obstacleGrid[0].size();i++)
{
if(obstacleGrid[0][i] == 0)
{
d[0][i] = 1;
}
else
{
d[0][i] = 0;
for(int j = i+1;j<obstacleGrid[0].size();j++)
d[0][j] = 0;
break;
}
}
for(int i=1;i<obstacleGrid.size();i++)
{
for(int j=1;j<obstacleGrid[0].size();j++)
{
if(obstacleGrid[i][j] == 1)
{
d[i][j] = 0;
}
else
{
d[i][j] = d[i-1][j]+d[i][j-1];
}
}
}
return d[obstacleGrid.size()-1][obstacleGrid[0].size()-1];
}
};