连分数(continued fraction)

  • 连分数的几种分类

如果a0,a1,a2,…an,…都是整数,则将分别称为无限连分数和有限连分数。可简记为a0 ,a1,a2,…,an,…和a0,a1,a2,…,an。

一般一个有限连分数表示一个有理数,一个无限连分数表示一个无理数。

如果a0,a1,a2,…,an,…都是实数,可将上述形式连分数分别叫无限连分数和有限连分数 。

近代数学的计算需要,还可将连分数中的a0,a1 ,a2,…,an,…取成以x为变元的多项式

  • 实数的小数表示

实数的小数表示如下:


这里的a0 可以是任意整数,其它ai 都是 {0, 1, 2, ..., 9} 的一个元素。

这种小数表示两个问题。例如,在这种情况下使用常数 10 是因为我们使用了 10进制系统,我们还可以使用 8进制或 2 进制系统。另一个问题是很多有理数在这个系统内缺乏有限表示。例如,数 1/3 被表示为无限序列 {0, 3, 3, 3, 3, ....}。

  •  实数的连分数表示

研究连分数的动机源于想要实数在数学上”“纯粹”的表示。

考虑实数 r。设 ir整数部分,而 f是它的小数部分。则 r的连分数表示是 [ i; …],这里的“…”是 1/ f的连分数表示。习惯上用分号取代 第一个逗号。
要计算实数 r的连分数表示,写下 r的整数部分(技术上 floor)。从 r减去这个整数部分。如果差为 0 则停止;否则找到这个差的倒数并重复。这个过程将终止,当且仅当 r是有理数。



# ContinuedFraction #### 项目介绍 连分数计算器 支持连分数和小数输入,高精度小数转连分数,无精度损失,用于获取小数在一定范围内最接近的分数 例如π的高精度转连分数 str=> 3.14159265358979 num=> 3.14159265358979000000000000000000000 ctf=> [3;7,15,1,292,1,1,1,2,1,3,1,12,2,4,1,1,3,2,2,1,18,1,2,2,1,7,2,2] 1=> 3.00000000000000000000000000000000000 3 3/1 2=> 3.14285714285714285714285714285714286 7 22/7 3=> 3.14150943396226415094339622641509434 15 333/106 4=> 3.14159292035398230088495575221238938 1 355/113 5=> 3.14159265301190260407226149477372968 292 103993/33102 6=> 3.14159265392142104470871594159265392 1 104348/33215 7=> 3.14159265346743670552045478534915632 1 208341/66317 8=> 3.14159265361893662339750030141060162 1 312689/99532 9=> 3.14159265358107777120441930658185778 2 833719/265381 10=> 3.14159265359140397848254241421927966 1 1146408/364913 11=> 3.14159265358938917154368732170690821 3 4272943/1360120 12=> 3.14159265358981538324194377730744861 1 5419351/1725033 13=> 3.14159265358978910556761228975786423 12 69305155/22060516 14=> 3.14159265358979009430798477470203822 2 144029661/45846065 15=> 3.14159265358978998813773682909318658 4 645423799/205444776 16=> 3.14159265358979000750767514045607416 1 789453460/251290841 17=> 3.14159265358978999879486079142367388 1 1434877259/456735617 18=> 3.14159265358979000014512509093352444 3 5094085237/1621497692 19=> 3.14159265358978999997843356720301190 2 11623047733/3699731001 20=> 3.14159265358979000000839600248412328 2 28340180703/9020959694 21=> 3.14159265358978999999968162106153623 1 39963228436/12720690695 22=> 3.14159265358979000000001193310441815 18 747678292551/237993392204 23=> 3.14159265358978999999999517378526962 1 787641520987/250714082899 24=> 3.14159265358979000000000056801156993 2 2322961334525/739421558002 25=> 3.14159265358978999999999978607241192 2 5433564190037/1729557198903 26=> 3.14159265358979000000000002025128805 1 7756525524562/2468978756905 27=> 3.14159265358978999999999999894805542 7 59729242861971/19012408497238 28=> 3.14159265358979000000000000024695141 2 127215011248504/40493795751381 29=> 3.14159265358979000000000000000000000 2 314159265358979/100000000000000
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值