- 连分数的几种分类
如果a0,a1,a2,…an,…都是整数,则将分别称为无限连分数和有限连分数。可简记为a0 ,a1,a2,…,an,…和a0,a1,a2,…,an。
一般一个有限连分数表示一个有理数,一个无限连分数表示一个无理数。
如果a0,a1,a2,…,an,…都是实数,可将上述形式连分数分别叫无限连分数和有限连分数 。
近代数学的计算需要,还可将连分数中的a0,a1 ,a2,…,an,…取成以x为变元的多项式。
- 实数的小数表示
实数的小数表示如下:
这里的a0 可以是任意整数,其它ai 都是 {0, 1, 2, ..., 9} 的一个元素。
这种小数表示两个问题。例如,在这种情况下使用常数 10 是因为我们使用了 10进制系统,我们还可以使用 8进制或 2 进制系统。另一个问题是很多有理数在这个系统内缺乏有限表示。例如,数 1/3 被表示为无限序列 {0, 3, 3, 3, 3, ....}。
- 实数的连分数表示
研究连分数的动机源于想要实数“在数学上”“纯粹”的表示。
考虑实数
r。设
i是
r的
整数部分,而
f是它的小数部分。则
r的连分数表示是 [
i; …],这里的“…”是 1/
f的连分数表示。习惯上用分号取代
第一个逗号。
要计算实数
r的连分数表示,写下
r的整数部分(技术上
floor)。从
r减去这个整数部分。如果差为 0 则停止;否则找到这个差的倒数并重复。这个过程将终止,当且仅当
r是有理数。