- 博客(201)
- 资源 (1)
- 收藏
- 关注
转载 Django如何使用bootstrap的模态框作为消息提示框
原文链接:https://www.ivdone.top/article/1497.html
2020-05-16 11:36:34 1101 1
转载 Django使用python3调用阿里云身份证识别接口实现正反身份证识别项目
原文链接:https://www.ivdone.top/article/1518.html
2020-05-16 11:33:54 588
转载 centos7安装Tesseract-OCR 4.1 报错 configure: error: Leptonica 1.74 or higher is required. 解决方法
原文链接:https://www.ivdone.top/article/1538.html
2020-05-16 11:33:00 952
转载 centos7安装libicu-dev,libpango1.0-dev,libcairo2-dev
原文链接:https://www.ivdone.top/article/1544.html
2020-05-16 11:31:58 2622
转载 Centos源码安装ICU 52.2的libicu-devel 库
原文链接:https://www.ivdone.top/article/1551.html
2020-05-16 11:31:00 3034
转载 CentOS 8 / RHEL 8 源码编译安装Tesseract-OCR 4.0及以上
原文链接:https://www.ivdone.top/article/1559.html
2020-05-16 11:29:59 711
转载 Linux下python3调用tesserocr-4.0及以上接口
原文链接:https://www.ivdone.top/article/1576.html
2020-05-16 11:28:44 260
转载 Mysql数据库忘记root密码怎么重置密码,非常实用!!
原文链接:https://www.ivdone.top/article/604.html
2020-04-20 14:27:11 249
转载 Nginx下wordpress如何修改固定链接,并且解决导致访问404错误的问题
原文链接:https://www.ivdone.top/article/636.html
2020-04-20 14:25:16 889
转载 CentOS 8 / RHEL 8 安装mysql5.7和8.0
原文链接:https://www.ivdone.top/article/815.html
2020-04-19 17:15:40 718
转载 CentOS 8 / RHEL 8 安装g++编译器
原文链接:https://www.ivdone.top/article/1023.html
2020-04-19 17:06:47 2014
转载 Linux下安装基于Python3.7的Anaconda环境
原文链接:https://www.ivdone.top/article/1034.html
2020-04-19 17:05:45 2777
转载 Nginx代理访问PHP文件,报错File not found
原文链接:https://www.ivdone.top/article/1068.html
2020-04-19 17:04:33 478
转载 code-server和vs-code 插件离线安装方法
原文链接:https://www.ivdone.top/article/1098.html
2020-04-19 17:00:42 3877
原创 移动计算技术概论
文章目录1 移动计算绪论1.1 移动计算的概念和特点移动计算的概念移动计算的主要特点1.2 移动计算的环境模型MH和MSS的接入方式移动计算的体系结构1.3 移动计算的应用领域1.4 移动计算的主要内容关键技术核心内容1 移动计算绪论1.1 移动计算的概念和特点移动计算的概念指节点处于移动状态下或非预定状态下的网络计算技术移动计算是使人们能在任何时间、任何地点、在运动过程中能够不间断地...
2020-03-03 12:00:14 1893
原创 判断输入的2个整型数据是否在0-100之间,如果是则求和,如果不是则报错是不合法的输入
# -*- coding: utf-8 -*-"""Created on Mon Feb 24 20:46:49 2020@author: Administrator题目:判断输入的2个整型数据是否在0-100之间,如果是则求和,如果不是则报错是不合法的输入"""a,b = map(int, input('输入2个0-100之间的整数:').split())if 0<=...
2020-03-02 19:51:26 783
原创 计算机三维动画技术绪论
文章目录1 什么是动画?2 什么是计算机动画?3 计算机动画的特点4 视频与动画的区别4.1 相同点4.2 不同点5 动画的本质5.1 分类6 动画的变化6.1 动画时间与节奏的掌握6.2 动画的时间特性6.3 动画的节奏掌控7 三维动画的制作过程8 动画的主要技术和方法8.1 关键帧动画关键帧8.2 路径动画8.3 变形动画8.4 过程动画8.5 粒子动画8.6 群体动画8.7 人物动画8.8 ...
2020-03-02 18:06:05 655
原创 【raptor】生成随机整数,求和
目标:随机生成两个整数(1-100),然后求和。raptor中有随机数函数。结果:分析:Random函数生成0-1(不包括1)的实数,则Random*100生成 0-100(不包括100)的实数。因此 Random*100+1 则生成 1-101(不包括101)的实数。要生成两个整数随机数,可以使用floor函数。步骤:(1)首先在raptor中依次插入 赋值框...
2020-02-22 18:52:54 9194
原创 raptor工具使用方法、两个数求和
【raptor软件界面】【符号】赋值、调用、输入、输出、选择、循环【例1】输入两个整数,然后求和目的:输入两个整数,然后求和最终结果:(1)输入两个整数拖动输入框,然后放入start和end框内(先保存文件)一共加入两个输入框。(2)双击输入框(3)在两个输入框中填写输入提示和输入变量输入提示要 双引号结果:(4)将x...
2020-02-22 17:58:36 9667
原创 难问题的部分分类
难问题的部分分类1 包装问题包装问题主要有独立集问题和集合包装问题。(1)独立集问题:给定图G和数k,问G包含大小至少为k的独立集吗?(2)集合包装问题:给定 nnn 个元素的集合 UUU , UUU 的子集 S1,S2,...,SmS_1,S_2,...,S_mS1,S2,...,Sm 以及数 kkk , 问在这些子集中至少含有 kkk 个集合两两不相交?2 覆盖问题覆盖问题主...
2020-02-18 15:41:59 218
原创 子集和问题是NP完全的
【子集和问题】给定自然数w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn和目标值W,问{w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn}有一个子集加起来恰好等于W吗?Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.Yes. 1 +...
2020-02-18 15:40:22 1892
原创 子集和问题
【子集和问题】给定自然数w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn和目标值W,问{w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn}有一个子集加起来恰好等于W吗?Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.Yes. 1 +...
2020-02-18 15:39:30 223
原创 三着色问题是NP完全的
【图着色问题】在图着色问题中,试图给图G中的每一个结点分配颜色,使得如果(u,v)是一条边,则边的两个结点的颜色不同。目标是使用很少的几种颜色做到这一点。使用的颜色数量为k。图着色问题可以阐述为:任意给图G和界限k,问G有k-着色吗?三着色问题是NP完全的有一个图G是二可着色的当且仅当它是二部图(这里不对齐进行证明)。对于3种颜色的情况,已经比较复杂了。三着色问题其实是一个NP完全问题。首先...
2020-02-18 15:38:33 4486 1
原创 图着色问题
【图着色问题】在图着色问题中,试图给图G中的每一个结点分配颜色,使得如果(u,v)是一条边,则边的两个结点的颜色不同。目标是使用很少的几种颜色做到这一点。使用的颜色数量为k。图着色问题可以阐述为:任意给图G和界限k,问G有k-着色吗?,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,...
2020-02-18 15:37:17 395
原创 三维匹配问题是NP完全的
【三维匹配问题】给定三个不相交的集合X、Y、Z,三个集合的大小都为n。给定一个三元组集合T⊆X×Y×ZT \subseteq X \times Y \times ZT⊆X×Y×Z,集合T的大小为m。问:T中是否存在一个大小为n的子集T’,这个子集恰好包含X,Y,Z每个元素一次。三维匹配问题其实是集合覆盖和集合包装问题的特例。三维匹配问题是NP完全的首先,很容易证明三维匹配问题是NP问题。...
2020-02-18 15:36:02 2312
原创 三维匹配问题
【三维匹配问题】给定三个不相交的集合X、Y、Z,三个集合的大小都为n。给定一个三元组集合T⊆X×Y×ZT \subseteq X \times Y \times ZT⊆X×Y×Z,集合T的大小为m。问:T中是否存在一个大小为n的子集T’,这个子集恰好包含X,Y,Z每个元素一次。三维匹配问题其实是集合覆盖和集合包装问题的特例。,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,....
2020-02-18 15:34:32 2670
原创 哈密顿路径问题+哈密顿路径问题是NP完全的
哈密顿路径问题【哈密顿路径问题】哈密顿路径问题是哈密顿圈问题的变种。如果有向图G中的路径P恰好包含每一个顶点一次,则称为是一条哈密顿路径。哈密顿路径问题是NP完全的证明哈密顿路径是NP完全,可以通过3-SAT归约到哈密顿路径。这与3-SAT归约到哈密顿问题是很相似的(只是没有t到s的边)。3-SAT归约到哈密顿问题:https://blog.csdn.net/Valieli/articl...
2020-02-18 15:32:05 4257
原创 哈密顿圈问题是NP完全的
【哈密顿圈问题】对于一个有向图G=(V,E),如果G中的圈C恰好经过每一个顶点一次,则称圈C是一个哈密顿圈。即,哈密顿圈构成一条经过所有的顶点,没有重复的“路线”。如图6是一个含有哈密顿圈的图。图6 一个含有哈密顿圈的有向图证明哈密顿圈问题是NPC的,可以通过证明3-SAT≤p\leq_p≤p哈密顿圈来得到。【3-SAT≤p\leq_p≤p哈密顿圈】构造方法如下:(1)对于每一个...
2020-02-17 16:54:12 6944
原创 哈密顿圈问题
【哈密顿圈问题】对于一个有向图G=(V,E),如果G中的圈C恰好经过每一个顶点一次,则称圈C是一个哈密顿圈。即,哈密顿圈构成一条经过所有的顶点,没有重复的“路线”。如图6是一个含有哈密顿圈的图。图6 一个含有哈密顿圈的有向图,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥,.,.♥♥,.,.♥,.,.♥,.,.♥,.♥,.,.♥,.,.♥,.,....
2020-02-17 16:49:31 2541 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人