数据结构之二叉树

二叉树是一种重要的数据结构,本篇包括二叉树的创建、三种二叉树遍历方式(递归与非递归)、计算二叉树结点个数、计算二叉树高度等操作。

一、存储结构

typedef char TElemType;

typedef struct BiTNode
{
	TElemType data;
	struct BiTNode *lchild;
	struct BiTNode *rchild;
}BiTNode, *BiTree;

二、基本操作

1、先序创建二叉树

void CreateBiTree(BiTree &T)
{
	TElemType ch;
	scanf("%c", &ch);
	if(ch == '\n')
		return;
	if(ch == ' ')
		T = NULL;
	else
	{
		T = (BiTree)malloc(sizeof(BiTNode));
		if(!T)
			return;
		T->data = ch;//生产根节点
		CreateBiTree(T->lchild);//构造左子树
		CreateBiTree(T->rchild);//构造右子树
	}
}

2、后序递归销毁二叉树

void DestoryBiTree(BiTree &T)
{
	if(T == NULL)
		return;
	DestoryBiTree(T->lchild);
	DestoryBiTree(T->rchild);
	free(T);T = NULL;
}

3、二叉树遍历

(1)前序遍历(含非递归)

递归:
void PreOrderTraverse(BiTree T, void (*Visit)(TElemType e))
{
	if(T == NULL)
		return;
	Visit(T->data);
	PreOrderTraverse(T->lchild, Visit);
	PreOrderTraverse(T->rchild, Visit);
}

非递归:
/*
非递归先序遍历
在遍历某一个二叉(子)树时,以一当前指针记录当前要处理的二叉(左子)树,
以一个栈保存当前树之后处理的右子树。首先访问当前树的根结点数据,接下来
应该依次遍历其左子树和右子树,然而程序的控制流只能处理其一,所以考虑将
右子树的根保存在栈里面,当前指针则指向需先处理的左子树,为下次循环做准
备;若当前指针指向的树为空,说明当前树为空树,不需要做任何处理,直接弹
出栈顶的子树,为下次循环做准
*/
void PreOrderTraverse_1(BiTree T, void (*Visit)(TElemType e))
{
	//定义栈
	const int MAXSIZE = 100;
	struct BiTNode *stack[MAXSIZE], *p;
	int top = -1;

	if(T == NULL)
		return;

	p = T;
	while(p || top != -1)
	{
		if(p)
		{
			Visit(p->data);
			stack[++top] = p->rchild;
			p = p->lchild;
		}
		else
			p = stack[top--];
 	}
}

(2)中序遍历(含非递归)

递归:
void InOrderTraverse(BiTree T)
{
	if(T == NULL)
		return;
	InOrderTraverse(T->lchild);
	printf("%c", T->data);
	InOrderTraverse(T->rchild);
}
非递归:
/*
非递归中序遍历
若当前树不为空树,则访问其根结点之前应先访问其左子树,因而先将当前
根节点入栈,然后考虑其左子树,不断将非空的根节点入栈,直到左子树为一空树;
当左子树为空时,不需要做任何处理,弹出并访问栈顶结点,然后指向其右子树,为下次循环做准备
*/
void InOrderTraverse_1(BiTree T)
{
	//定义栈
	const int MAXSIZE = 100;
	struct BiTNode *stack[MAXSIZE], *p;
	int top= -1;//初始化栈

	if (T == NULL)
		return;

	p = T;
	while(p || top != -1)
	{
		if(p)//根指针进栈,遍历左子树
		{
			stack[++top] = p;
			p = p->lchild;
		}
		else//根指针退栈,访问根节点,遍历右子树
		{
			p = stack[top--];
			printf("%c", p->data);
			p = p->rchild;
		}
	}
}
另一种非递归方式:
void InOrderTraverse_2(BiTree T)
{
	//定义栈
	const int MAXSIZE = 100;
	struct BiTNode *stack[MAXSIZE], *p;
	int top= -1;//初始化栈

	if (T == NULL)
		return;

	stack[++top] = T;//根指针进栈
	while(top != -1)//栈不空
	{
		while((p = stack[top]))//向左走到尽头
			stack[++top] = p->lchild;
		--top;//空指针退栈
		if(top != -1)//访问结点,向右一步
		{
			p = stack[top--];
			printf("%c",p->data);
			stack[++top] = p->rchild;
		}		
	}
}

(3)后序遍历(含非递归)

递归:
void PostOrderTraverse(BiTree T)
{
	if (T == NULL)
		return;
	PostOrderTraverse(T->lchild);
	PostOrderTraverse(T->rchild);
	printf("%c", T->data);
}
非递归:
/*
非递归后序遍历
由于在访问当前树的根结点时,应先访问其左、右子树,
因而先将根结点入栈,接着将右子树也入栈,然后考虑左子树,重复这一过程直到某一左子树为空;
如果当前考虑的子树为空,若栈顶不为空,说明第二栈顶对应的树的右子树未处理,则弹出栈顶,
下次循环处理,并将一空指针入栈以表示其另一子树已做处理;
若栈顶也为空树,说明第二栈顶对应的树的左右子树或者为空,或者均已做处理,直接访问第二栈顶
的结点,访问完结点后,若栈仍为非空,说明整棵树尚未遍历完,则弹出栈顶,并入栈一空指针表示
第二栈顶的子树之一已被处理
*/
void PostOrderTraverse_1(BiTree T)
{
	//定义栈
	const int MAXSIZE = 100;
	struct BiTNode *stack[MAXSIZE], *p;
	int top= -1;//初始化栈

	if (T == NULL)
		return;

	p = T;
	while(1)
	{
		if(p)
		{
			stack[++top] = p;
			stack[++top] = p->rchild;
			p = p->lchild;
		}
		else if(!p)
		{
			p = stack[top--];
			if(!p)
			{
				p = stack[top--];
				printf("%c", p->data);
				if(top == -1)
					break;
				p = stack[top--];
			}
			stack[++top] = NULL;
		}
	}
}

4、二叉树其他操作

(1)求二叉树结点个数

int BiTreeNodes(BiTree T)
{
	if (T == NULL)
		return 0;
	else
		return 1 + BiTreeNodes(T->lchild) + BiTreeNodes(T->rchild);
}

(2)求二叉树的高度

int BiTreeHeight(BiTree T)
{
	if(T == NULL)
		return 0;
	else
	{
		int lh = BiTreeHeight(T->lchild);
		int rh = BiTreeHeight(T->rchild);
		return lh > rh ? lh + 1 : rh + 1;
	}
}

(3)层次遍历二叉树

先将树的根节点入队,
如果队列不空,则进入循环
{
        将队首元素出队,并输出它;
       如果该队首元素有左孩子,则将其左孩子入队;
       如果该队首元素有右孩子,则将其右孩子入队
}


void LevelOrderTraverse(BiTree T)
{
	if (T == NULL) 
		return;

	SqQueue<BiTNode*> q;
	BiTNode*p;
	q.EnQueue(T);
	while (!q.QueueEmpty())
	{
		q.DeQueue(p);
		visit(p);
		if (p->lchild != NULL) q.EnQueue(p->lchild);
		if (p->rchild != NULL) q.EnQueue(p->rchild);
	}
}
层次遍历类似BFS。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值