Tarjan算法

Tarjan算法用于求有向图的强连通分量(强连通分支)。
(1)”强连通分量“的概念:
有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向 路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通 分量(strongly connected components)。 简称scc
(2)Tarjan算法原理
设u为scc的根(第一个被发现的结点)那么不存在一条路径从u到达它的祖先,同时也不存在这样的路径从u的子结点v到达u的祖先。借助这条原理我们定义:
lowlink(u)为u及其后代所能追溯到的最早(最先被发现)祖先点v的dfn(v)值。
dfn[v]记录v被访问的时间(时间戳)也可以理解为再访问该结点前已经访问的结点数;
scc_cnt为scc计数器;
sccno[i]为i所在的scc编号;
核心代码;

vector<int>G[maxn];
int dfn[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int>S;

void dfs(int u)
{
dfn[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i];
if(!dfn[v])
{
dfs(v);
lowlink[u]=min(lowlink[u],lowlink[v]);
}
else if(!sccno[v]) lowlink[u]=min(lowlink[u],dfn[v]);
}
if(lowlink[u]==dfn[u])
{
scc_cnt++;
for(;;)
{
int x=S.top();S.pop();
sccno[x]=scc_cnt;
if(x==u)break;
}
}
}
void find_scc(int n)
{
dfs_clock=scc_cnt=0;
memset(sccno,0,sizeof(sccno));
memset(dfn,0,sizeof(dfn));
for(int i=1;i<=n;i++)
if(!dfn[i])dfs(i);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
LCA(最近公共祖先)是指在一棵树中,找到两个节点的最近的共同祖先节点。而Tarjan算法是一种用于求解强连通分量的算法,通常应用于有向图中。它基于深度优先搜索(DFS)的思想,通过遍历图中的节点来构建强连通分量。Tarjan算法也可以用于求解LCA问题,在有向无环图(DAG)中。 具体来说,在使用Tarjan算法求解LCA时,我们需要进行两次DFS遍历。首先,我们从根节点开始,遍历每个节点,并记录每个节点的深度(即从根节点到该节点的路径长度)。然后,我们再进行一次DFS遍历,但这次我们在遍历的过程中,同时进行LCA的查找。对于每个查询,我们将两个待查询节点放入一个查询列表中,并在遍历过程中记录每个节点的祖先节点。 在遍历的过程中,我们会遇到以下几种情况: 1. 如果当前节点已被访问过,说明已经找到了该节点的祖先节点,我们可以更新该节点及其所有后代节点的祖先节点。 2. 如果当前节点未被访问过,我们将其标记为已访问,并将其加入到查询列表中。 3. 如果当前节点有子节点,我们继续递归遍历子节点。 最终,对于每个查询,我们可以通过查询列表中的两个节点的最近公共祖先节点来求解LCA。 需要注意的是,Tarjan算法时间复杂度为O(V+E),其中V为节点数,E为边数。因此,对于大规模的树结构,Tarjan算法是一种高效的求解LCA问题的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值