SQL语句优化 (二) (53)

接上一部分

(4)如果不是索引列的第一部分,如下例子:可见虽然在money上面建有复合索引,但是由于money不是索引的第一列,那么在查询中这个索引也不会被MySQL采用。

mysql> explain select * from sales2 where moneys=1 \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: sales2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1000
        Extra: Using where
1 row in set (0.00 sec)

(5)如果like是以%开始,可见虽然在name上面建有索引,但是由于where条件中like的值的“%”在第一位了,那么MySQL也会采用这个索引。

mysql> explain select * from company2 where name like‘%3’\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: company2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1000
        Extra: Using where
1 row in set (0.00 sec)

(6)如果列类型是字符串,但在查询时把一个数值型常量赋值给了一个字符型的列名name,那么虽然在name列上有索引,但是也没有用到。

mysql> explain select * from company2 where name=294\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: company2
         type: ALL
possible_keys: ind_company2_name
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1000
        Extra: Using where
1 row in set (0.00 sec)

 

  而下面的sql语句就可以正确使用索引

mysql> explain select * from company2 where name=‘294’\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: company2
         type: ref
possible_keys: ind_company2_name
          key: ind_company2_name
      key_len: 23
          ref: const
         rows: 1
        Extra: Using where
1 row in set (0.00 sec)

3 查看索引使用情况

  如果索引正在工作,Handler_read_key的值将很高,这个值代表了一个行被索引值读的次数。

  Handler_read_rnd_next的值高则意味着查询运行低效,并且应该建立索引补救。

   mysql> show status like 'Handler_read%';
  +-----------------------+-------+
  | Variable_name         | Value |
  +-----------------------+-------+
  | Handler_read_first    | 0     |
  | Handler_read_key      | 5     |
  | Handler_read_next     | 0     |
  | Handler_read_prev     | 0     |
  | Handler_read_rnd      | 0     |
  | Handler_read_rnd_next | 2055  |
  +-----------------------+-------+
   6 rows in set (0.00 sec)

 

两个简单实用的优化方法

分析表的语法如下:(检查一个或多个表是否有错误 )

mysql> CHECK TABLE tbl_name[,tbl_name] … [option] … option =
  { QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

mysql> check table sales;
+--------------+-------+----------+----------+
| Table        | Op    | Msg_type | Msg_text |
+--------------+-------+----------+----------+
| sakila.sales | check | status   | OK       |
+--------------+-------+----------+----------+
1 row in set (0.01 sec)

优化表的语法格式:

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [,tbl_name]

如果已经删除了表的一大部分,或者如果已经对含有可变长度行的表进行了很多的改动,则需要做定期优化。这个命令可以将表中的空间碎片进行合并,但是此命令只对MyISAM、BDB和InnoDB表起作用。

mysql> optimize table sales;
+--------------+----------+----------+----------+
| Table        | Op       | Msg_type | Msg_text |
+--------------+----------+----------+----------+
| sakila.sales | optimize | status   | OK       |
+--------------+----------+----------+----------+
1 row in set (0.05 sec)

4 常用SQL的优化

1 大批量插入数据

    当用load命令导入数据的时候,适当设置可以提高导入的速度。

  对于MyISAM存储引擎的表,可以通过以下方式快速的导入大量的数据。

ALTER TABLE tbl_name DISABLE KEYS
loading the data
ALTER TABLE tbl_name ENABLE KEYS

DISABLE KEYS 和ENABLE KEYS 用来打开或关闭MyISAM表非唯一索引的更新,可以提高速度,注意:对InnoDB表无效。

 

没有使用打开或关闭MyISAM表非唯一索引:
mysql> load data infile ‘/home/mysql/film_test.txt’into table film_test2 fields terminated by “,”;
Query OK,529056 rows affected (1 min 55.12 sec)
Records:529056 Deleted:0 Skipped:0 Warnings:0

使用打开或关闭MyISAM表非唯一索引:
mysql> alter table film_test2 disable keys;
Query OK,0 rows affected (0.0 sec)
mysql> load data infile ‘/home/mysql/film_test.txt’into table film_test2;
Query OK,529056 rows affected (6.34 sec)
Records:529056 Deleted:0 Skipped:0 Warnings:0
mysql> alter table film_test2 enable keys;
Query OK,0 rows affected (12.25 sec)
以上对MyISAM表的数据导入,但对于InnoDB表并不能提高导入数据的效率

 

(1)针对于InnoDB类型表数据导入的优化

因为InnoDB表的按照主键顺序保存的,所以将导入的数据主键的顺序排列,可以有效地提高导入数据的效率。

使用test3.txt文本是按表film_test4主键存储顺序保存的
mysql> load data infile ‘/home/mysql/film_test3.txt’into table film_test4;
Query OK, 1587168 rows affected (22.92 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0
使用test3.txt没有任何顺序的文本(效率慢了1.12倍)
mysql> load data infile ‘/home/mysql/film_test4.txt’into table film_test4;
Query OK, 1587168 rows affected (31.16 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0

(2)关闭唯一性效验可以提高导入效率

在导入数据前先执行set unique_checks=0,关闭唯一性效验,在导入结束后执行set unique_checks=1,恢复唯一性效验,可以提高导入效率。

当unique_checks=1时
mysql> load data infile ‘/home/mysql/film_test3.txt’into table film_test4;
Query OK,1587168 rows affected (22.92 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0
当unique_checks=0时
mysql> load data infile ‘/home/mysql/film_test3.txt’into table film_test4;
Query OK,1587168 rows affected (19.92 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0

(3)关闭自动提交可以提高导入效率

  在导入数据前先执行set autocommit=0,关闭自动提交事务,在导入结束后执行set autocommit=1,恢复自动提交,可以提高导入效率。

当autocommit=1时
mysql> load data infile ‘/home/mysql/film_test3.txt’into table film_test4;
Query OK,1587168 rows affected (22.92 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0
当autocommit=0时
mysql> load data infile ‘/home/mysql/film_test3.txt’into table film_test4;
Query OK,1587168 rows affected (20.87 sec)
Records:1587168 Deleted:0 Skipped:0 Warnings:0

2 优化insert语句

尽量使用多个值表的insert语句,这样可以大大缩短客户与数据库的连接、关闭等损耗。

可以使用insert delayed(马上执行)语句得到更高的效率。

将索引文件和数据文件分别存放不同的磁盘上。

可以增加bulk_insert_buffer_size 变量值的方法来提高速度,但是只对MyISAM表使用

当从一个文件中装载一个表时,使用LOAD DATA INFILE。这个通常比使用很多insert语句要快20倍。

3 优化group by语句

如果查询包含group by但用户想要避免排序结果的损耗,则可以使用使用order by null来禁止排序:

  如下没有使用order by null来禁止排序

mysql> explain select id,sum(moneys) from sales2 group by id\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: sales2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1000
        Extra: Using temporary;Using filesort
1 row in set (0.00 sec)

如下使用order by null的效果:

mysql> explain select id,sum(moneys) from sales2 group by id order by null\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: sales2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1000
        Extra: Using temporary
1 row in set (0.00 sec)

 4.1 优化表的类型

在MySQL中,可以使用函数PROCEDUREANALYSE()对当前应用的表进行分析,改函数可以对数据表中列的数据类型提出优化建议,用户可以根据应用的实际情况酌情考虑是否实施

mysql> select * from duck_cust procedure analyse()\G
*************************** 1. row ***************************
             Field_name: sakila.duch_cust.cust_num
              Min_value: 1
              Max_value: 6
             Min_length: 1
             Max_length: 1
       Empties_or_zeros: 0
                  Nulls: 0
Avg_value_or_avg_length: 3.5000
                    Std: 1.7078
      Optimal_fieldtype: ENUM(‘1’,‘2’,‘3’,‘4’) NOT NULL
*************************** 2. row ***************************
  … …

4.2 大存储量解决

1.分库分表

2.分区

 

主要目的:

1.减少表的记录数

2.减小对操作系统的负担压力

myisam读锁定

1.lock table t1 read

2.开启另一个mysql连接终端,接着去尝试:

select * from t1

3.再insert、update和delete t1这张表,你会发现所有的数据都停留在终端上没有真正的去操作

4.读锁定对我们在做备份大量数据时非常有用.

mysqldump -uroot -p123 test >test.sql

myisam写锁定

1.lock table t1 write

2.打开另一个mysql终端,尝试去select、insert、update和delete这张表t1,你会发现都不能操作,都会停留在终端上,只有等第一个终端操作完毕,第二个终端才能真正执行.

3.可见表的写锁定比读锁定更严格

4.一般情况下我们很少去显式的去对表进行read和write锁定的,myisam会自动进行锁定的.

慢查询日志

1.有关慢查询

开户和设置慢查询时间:

vi /etc/my.cnf

log_slow_queries=slow.log

long_query_time=5

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值