OutOfRangeError PaddingFIFOQueue '_1_get_batch/batch/padding_fifo_queue 解决方案

最近使用Faster-RCNN训练模型时,遇到了如标题所示的问题,最终得到解决,现在记录解决方式如下:

一般这种问题都不是代码的问题,请先检查训练数据:

1. 训练数据中图像文件和标注文件数量是否相同

2. 训练数据中是否有损坏的图片(数量多的话可以用PIL写个简单的加载方法去判断)

3. 标注文件中标注的长宽与实际长宽是否相同(我的问题在这里得到了解决,下面列出检测的代码):

from xml.etree.ElementTree import ElementTree, Element
import os
import numpy as np
import cv2

# 可以读取带中文路径的图
def cv_imread(file_path):
    cv_img = cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), -1)
    return cv_img

def read_xml(in_path):
    tree = ElementTree()
    tree.parse(in_path)
    return tree

if __name__ == '__main__':
    source_pic_root_path = '你的训练数据文件夹地址'
    for parent, _, files in os.walk(source_pic_root_path):
        for file in files:
            if file.endswith('.xml'):
                continue
            pic_path = os.path.join(parent, file)
            img = None
            try:
                img = cv_imread(pic_path)
                if img is None:
                    raise Exception('图片打开失败')
            except Exception as e:
                print(str(e))
                continue
            size = img.shape
            xml_path = os.path.join(source_pic_root_path, file[:-4] + '.xml')
            tree = read_xml(xml_path)
            root = tree.getroot()
            for h_node in root.iter('height'):
                height = str(size[0])
                # 检测
                if height != h_node.text:
                    print('{}==>{}==>{}'.format(height,h_node.text,file))
                    print('--------------')
                # 解决
                # h_node.text = height

            for w_node in root.iter('width'):
                width = str(size[1])
                # 检测
                if width != w_node.text:
                    print('{}==>{}==>{}'.format(width, w_node.text, file))
                    print('--------------')
                # 解决
                # w_node.text = width
            # 在解决时打开该注释
            #tree.write(xml_path)

数据检测完毕完全没问题之后,可以查看代码的初始化部分的问题(未初始化local variables也会导致该问题):

with tf.Session() as sess:
    sess.run(tf.local_variables_initializer())
    sess.run(tf.global_variables_initializer())

 

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值