最近使用Faster-RCNN训练模型时,遇到了如标题所示的问题,最终得到解决,现在记录解决方式如下:
一般这种问题都不是代码的问题,请先检查训练数据:
1. 训练数据中图像文件和标注文件数量是否相同
2. 训练数据中是否有损坏的图片(数量多的话可以用PIL写个简单的加载方法去判断)
3. 标注文件中标注的长宽与实际长宽是否相同(我的问题在这里得到了解决,下面列出检测的代码):
from xml.etree.ElementTree import ElementTree, Element
import os
import numpy as np
import cv2
# 可以读取带中文路径的图
def cv_imread(file_path):
cv_img = cv2.imdecode(np.fromfile(file_path, dtype=np.uint8), -1)
return cv_img
def read_xml(in_path):
tree = ElementTree()
tree.parse(in_path)
return tree
if __name__ == '__main__':
source_pic_root_path = '你的训练数据文件夹地址'
for parent, _, files in os.walk(source_pic_root_path):
for file in files:
if file.endswith('.xml'):
continue
pic_path = os.path.join(parent, file)
img = None
try:
img = cv_imread(pic_path)
if img is None:
raise Exception('图片打开失败')
except Exception as e:
print(str(e))
continue
size = img.shape
xml_path = os.path.join(source_pic_root_path, file[:-4] + '.xml')
tree = read_xml(xml_path)
root = tree.getroot()
for h_node in root.iter('height'):
height = str(size[0])
# 检测
if height != h_node.text:
print('{}==>{}==>{}'.format(height,h_node.text,file))
print('--------------')
# 解决
# h_node.text = height
for w_node in root.iter('width'):
width = str(size[1])
# 检测
if width != w_node.text:
print('{}==>{}==>{}'.format(width, w_node.text, file))
print('--------------')
# 解决
# w_node.text = width
# 在解决时打开该注释
#tree.write(xml_path)
数据检测完毕完全没问题之后,可以查看代码的初始化部分的问题(未初始化local variables也会导致该问题):
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())