sqrt方法复杂度探讨

sqrt方法复杂度探讨

有一次,博主在解一个问题时,由于开方花费了大量时间从而导致时间复杂度过高而无法AC,博主决定研究一下sqrt的复杂度。

二分法

对开方这个操作,二分法是最直观的方案,也非常易于理解。

// 二分法 
double mysqrt1(int m){
	if(m <= 1){
		return m;
	}
	double last = 0;
	double start = 0;
	double end = m;
	double mid = (start + end)/2;
	while(abs(last-mid) > exp){
		if(mid * mid > m){
			end = mid;
		}
		else{
			start = mid;
		}
		last = mid;
		mid = (start + end)/2;
	}
	return last;
}

不断以二分方式逼近解,当误差小于给定值exp时,即得到了开方的解。

牛顿下降法

牛顿下降法的原理为:
求根号a的近似值,相当于求f(x) = x^2-a的解。首先随便猜一个近似值x,然后不断令x等于xa/x的平均数,迭代个六七次后x的值就已经相当精确了。

这种算法的原理很简单:
仅仅是不断用(x,f(x))的切线来逼近方程x^2-a=0的根。根号a实际上就是x^2-a=0的一个正实根,这个函数的导数是2x。也就是说,函数上任一点(x,f(x))处的切线斜率是2x。那么,设下一轮迭代新解为k,直线的等式为:(x-k)*2x =f(x)k=x-f(x)/(2x)就是一个比x更接近的近似值。代入f(x)=x^2-a得到k = x-(x^2-a)/(2x),也就是k = (x+a/x)/2

例如,我想求根号2等于多少。假如我猜测的结果为4,虽然错的离谱,但你可以看到使用牛顿迭代法后这个值很快就趋近于根号2了:
( 4 + 2/4 ) / 2 = 2.25
( 2.25 + 2/2.25 ) / 2 = 1.56944…
( 1.56944…+ 2/1.56944…) / 2 = 1.42189…
( 1.42189…+ 2/1.42189…) / 2 = 1.41423…
在这里插入图片描述

// 牛顿迭代法
double sqrt_by_newton(int m){
	double last = m;
	double ans = m;
	ans = (ans + m/ans) / 2;
	while(abs(ans - last) > exp){
		last = ans;
		ans = (ans + m/ans) / 2;
	}
	return ans;
} 

牛顿下降法的速度相对于二分法的速度,快很多。

约翰-卡马克(John Carmack)

引入:一个神奇的算法

float InvSqrt(float x)
{
    float xhalf = 0.5f*x;
    int i = *(int*)&x; // get bits for floating VALUE 
    i = 0x5f375a86- (i>>1); // gives initial guess y0
    x = *(float*)&i; // convert bits BACK to float
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
    x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy

    return 1/x;
}

经研究,这个算法起初来源于一个游戏的源码。然后,这就有了另一个故事了。

Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake…每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

最近,QUAKE的开发商ID SOFTWARE 遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。这是QUAKE-III原代码的下载地址: http://www.fileshack.com/file.x?fid=7547

我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学运算。那么找到最底层的数学运算函数(在game/code/q_math.c), 必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:

float Q_rsqrt( float number )
{
	long i;
	float x2, y;
	const float threehalfs = 1.5F;

	x2 = number * 0.5F;
	y   = number;
	i   = * ( long * ) &y;   // evil floating point bit level hacking
	i   = 0x5f3759df - ( i >> 1 ); // what the fuck?
	y   = * ( float * ) &i;
	y   = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
	// y   = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

	#ifndef Q3_VM
	#ifdef __linux__
		 assert( !isnan(y) ); // bk010122 - FPE?
	#endif
	#endif
	return y;
}  

函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。
注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!
这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句
i = 0x5f3759df - ( i >> 1 );

再加上y = y * ( threehalfs - ( x2 * y * y ) );
两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f’(x)来不断的逼近f(x)=a的根。

没错,一般的求平方根都是这么循环迭代算的但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值,就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛顿迭代就可以达到我们所需要的精度。好吧如果这个还不算NB,接着看:

普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?

传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是卡马克赢了… 谁也不知道卡马克是怎么找到这个数字的。

最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,“Fast Inverse Square Root”。 论文下载地址:
http://www.math.purdue.edu/~clomont/Math/Papers/2003/InvSqrt.pdf
http://www.matrix67.com/data/InvSqrt.pdf

测试

博主参考了上述内容,并编码测试了性能。

#include <bits/stdc++.h>
#define exp 0.000001
using namespace std;

clock_t t1, t2, t3, t4, t5, t6, t7;

// 二分法 
double mysqrt1(int m){
	if(m <= 1){
		return m;
	}
	double last = 0;
	double start = 0;
	double end = m;
	double mid = (start + end)/2;
	while(abs(last-mid) > exp){
		if(mid * mid > m){
			end = mid;
		}
		else{
			start = mid;
		}
		last = mid;
		mid = (start + end)/2;
	}
	return last;
}

// 牛顿迭代法
double sqrt_by_newton(int m){
	double last = m;
	double ans = m;
	ans = (ans + m/ans) / 2;
	while(abs(ans - last) > exp){
		last = ans;
		ans = (ans + m/ans) / 2;
	}
	return ans;
} 

// 骚操作,必须使用float而不能用double 
float InvSqrt(float m){
	float mhalf = 0.5f * m;
	int i = *(int*)&m;
	i = 0x5f375a86 - (i>>1);  // 这个常数是多次测试后找到的最精确的 
	m = *(float*)&i;
	m = m*(1.5f-mhalf*m*m);   // 迭代次数取决于所要求的精度 
//	m = m*(1.5f-mhalf*m*m);
//	m = m*(1.5f-mhalf*m*m);
	return 1/m;
}

// 约翰-卡马克(John Carmack)
float Q_rsqrt( float number )
{
    long i;
    float x2, y;
    const float threehalfs = 1.5F;
    x2 = number * 0.5F;
    y   = number;
    i   = * ( long * ) &y;   // evil floating point bit level hacking
    i   = 0x5f3759df - ( i >> 1 ); // what the fuck?
    y   = * ( float * ) &i;
    y   = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
    // y   = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
    return 1/y;
}   

int main()
{
	double ans;
	t1 = clock();	
	for(int i = 1; i < 10000000; i++){
		ans = mysqrt1(i);   // 二分法 
	}
	t2 = clock();
	for(int i = 1; i < 10000000; i++){
		ans = sqrt(i);   // 系统方法,现在系统应该是又做了优化 
	}
	t3 = clock();
	for(int i = 1; i < 10000000; i++){
		ans = sqrt_by_newton(i);   // 牛顿迭代法
	}
	t4 = clock(); 
	for(int i = 1; i < 10000000; i++){
		ans = InvSqrt(i);
	}
	t5 = clock();
	for(int i = 1; i < 10000000; i++){
		ans = Q_rsqrt(i);                      // 精度其实是有所缺陷的 
	}
	t6 = clock();
	for(int i = 1; i < 10000000; i++){
		ans = i + ans;              
	}
	t7 = clock();
	
	cout << "二分法:\t" << t2 - t1 << endl; 
	cout << "系统:\t\t" << t3 - t2 << endl; 
	cout << "牛顿迭代法:\t" << t4 - t3 << endl; 
	cout << "网上骚操作:\t" << t5 - t4 << endl;
	cout << "约翰-卡马克:\t" << t6 - t5 << endl;
	cout << "同量的加法:\t" << t7 - t6 << endl;
	return 0;
} 



//  https://blog.csdn.net/album_gyd/article/details/81416398 

得到的结果为:
在这里插入图片描述虽然现在系统的sqrt与加法基本一个复杂度,但博主估计应该是借鉴了约翰-卡马克的方法,并在指令集层面增加了优化才达到的。

博主建议:理解并搞定牛顿下降法,更有意义。不必强行hold住上述的骚操作。

  • 24
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值