POJ 3468 A Simple Problem with Integers(线段树,裸)

第一次写区间修改的线段树。

update(): 成段增减

query(): 区间求和

#include <cstdio>
using namespace std;

typedef long long LL;
const int maxn = 110000;
LL sum[maxn<<2];
LL add[maxn<<2];

void pushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}

void pushDown(int rt, int l, int r)
{
    int m = r-l+1;
    if(add[rt]) {
        add[rt<<1] += add[rt];
        sum[rt<<1] += add[rt] * (m-(m>>1));
        add[rt<<1|1] += add[rt];
        sum[rt<<1|1] += add[rt] * (m>>1);
        add[rt] = 0;
    }
}

void build(int rt, int l, int r)
{
    add[rt] = 0;
    if(l == r) {
        scanf("%lld", &sum[rt]);
        return ;
    }
    int m = (l+r)>>1;
    build(rt<<1, l, m);
    build(rt<<1|1, m+1, r);
    pushUp(rt);
}

void update(int L, int R, LL c, int rt, int l, int r)
{
    if(L <= l && r <= R) {
        add[rt] += c;
        sum[rt] += c * (r-l+1);
        return ;
    }
    pushDown(rt, l, r);
    int m = (l+r)>>1;
    if(L <= m) update(L, R, c, rt<<1, l, m);
    if(R > m) update(L, R, c, rt<<1|1, m+1, r);
    pushUp(rt);
}

LL Query(int L, int R, int rt, int l, int r)
{
    if(L <= l && r <= R)
        return sum[rt];
    pushDown(rt, l, r);
    LL ret = 0;
    int m = (l+r)>>1;
    if(L <= m) ret += Query(L, R, rt<<1, l, m);
    if(R > m) ret += Query(L, R, rt<<1|1, m+1, r);
    return ret;
}

int main()
{
    int n, q;
    while(~scanf("%d%d", &n, &q)) {
        build(1, 1, n);
        for(int i = 0; i < q; i++) {
            char cmd[2];
            scanf("%s", cmd);
            if(cmd[0] == 'C') {
                int a, b;
                LL c;
                scanf("%d%d%lld", &a, &b, &c);
                update(a, b, c, 1, 1, n);
            }
            else {
                int a, b;
                scanf("%d%d", &a, &b);
                printf("%lld\n", Query(a, b, 1, 1, n));
            }
        }
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值