动态规划1(DP)

本文详细介绍了动态规划的概念、基本原理,包括最优子结构、重叠子问题及其解决方案(记忆化和表格化),以及通过实例阐述了最长公共子序列(LCS)和最长递增子序列(LIS)的动态规划解题方法。
摘要由CSDN通过智能技术生成

1. 动态规划的思想

动态规划(Dynamic Programming,DP)通过将复杂问题分解为更小的子问题,并存储这些子问题的解(通常是在表格中),从而避免重复计算,提高了算法的效率。

动态规划与贪心算法、分治算法等其他优化算法相比,最大的特点是它对子问题的全面考察。贪心算法每步都做出在当前看来最好的选择,可能无法达到全局最优;分治算法将问题分解后独立解决各子问题,不适用于子问题重叠的情况。而动态规划通过存储子问题的解来避免重复计算,旨在找到全局最优解。

2.动态规划的基本原理

2.1 最优子结构

最优子结构是指问题的最优解包含其子问题的最优解。具体而言,如果我们可以通过组合子问题的最优解来构造出原问题的最优解,那么这个问题就具有最优子结构的性质。在动态规划中,识别并利用最优子结构是解决问题的关键。

2.2 重叠子问题

在递归算法中,很多问题会多次计算相同的子问题,这种现象称为重叠子问题。动态规划算法通过记忆化或者表格化来存储这些子问题的解,确保每个子问题只被解决一次,从而显著提高效率。

2.3 记忆化(Memoization)与表格化(Tabulation)
  • 记忆化是一种自顶向下的动态规划实现方式,它从原问题开始,递归地解决子问题。在这个过程中,每次计算一个子问题的解时,都会先检查这个解是否已经被计算并存储起来,如果是,就直接使用,避免重复计算。
  • 表格化是一种自底向上的动态规划实现方式,它首先解决最小子问题,并逐步结合这些解来得到更大子问题的解,直至解决原问题。这个过程通常使用一个表格来存储所有子问题的解。
2.4 状态转移方程(State Transition Equation)

状态转移方程描述了子问题之间是如何相互关联的。在动态规划中,我们定义一组变量来表示问题的状态,然后找到状态之间转移的关系,即从一个状态如何转移到另一个状态。这些转移关系通常以数学公式的形式表达,是动态规划算法中的核心。

3. 动态规划的基本解题步骤

  • 定义状态
  • 定义状态转移方程
  • 解决基本情况(base case)

4. 动态规划的经典例题理解

4. 1最长公共子序列(LCS)

最长公共子序列(Longest Common Subsequence, LCS)问题是寻找两个序列共有的最长子序列的长度,这个子序列不需要在原序列中是连续的

解题思路:

1. 定义状态

在LCS问题中,定义 dp[i][j] 为序列 X[0..i-1] 和序列 Y[0..j-1] 的最长公共子序列的长度。这里,ij 分别表示序列 X 和序列 Y 中元素的索引,范围从1到序列长度。

2. 定义状态转移方程

  • X[i - 1] == Y[j - 1] 时,我们发现了两个序列中共有的元素,因此 dp[i][j] 应该是这个共有元素之前的最长公共子序列的长度加一,即 dp[i][j] = dp[i - 1][j - 1] + 1

  • X[i - 1] != Y[j - 1] 时,最长公共子序列要么在 X 的前 i-1 个元素和 Y 的前 j 个元素中,要么在 X 的前 i 个元素和 Y 的前 j-1 个元素中,所以 dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

3. 解决基本情况

基本情况对应于矩阵的边界,当任一序列长度为0时(即 i == 0j == 0),dp[i][j] 自然应该是0,因为空序列与任何序列的最长公共子序列长度都是0。

代码实现如下:

def lcs(X, Y):
    m, n = len(X), len(Y)
    dp = [[0] * (n + 1) for _ in range(m + 1)]
    
    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if X[i - 1] == Y[j - 1]:
                dp[i][j] = dp[i - 1][j - 1] + 1
            else:
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
    
    return dp[m][n]

4.2 最长递增子序列(LIS)

最长递增子序列(Longest Increasing Subsequence, LIS)问题是在一个无序的给定序列中寻找一个最长的递增子序列。

解题思路:

1. 定义状态

我们定义 dp[i] 为以元素 nums[i] 结尾的最长递增子序列的长度。

2. 定义状态转移方程

对于每个 i(从1到 n-1),我们都检查前面的每个较小的 j(从0到 i-1),如果 nums[i] > nums[j],这意味着我们可以将 nums[i] 接在由 nums[j] 结尾的递增子序列后面,形成一个新的递增子序列。因此,更新 dp[i]dp[j] + 1dp[i] 的较大者,具体转移方程为:dp[i] = max(dp[i], dp[j] + 1),对所有 0 ≤ j < inums[i] > nums[j]

3. 解决基本情况

基本情况是在序列开头,每个元素自身构成一个长度为1的递增子序列,因此,初始化 dp[i] = 1 对所有 0 ≤ i < n

代码实现如下:

def lis(nums):
    if not nums:
        return 0
    
    n = len(nums)
    dp = [1] * n
    
    for i in range(1, n):
        for j in range(i):
            if nums[i] > nums[j]:
                dp[i] = max(dp[i], dp[j] + 1)
    
    return max(dp)

  • 20
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值