Dijkstra算法

Dijkstra算法是典型的最短路径路由算法,用来计算一个节点到其他所有可能节点的最短路径,具体算法流程介绍等可以谷歌之。
这里贴一份C++代码,图是用邻接矩阵来表示的。

#include "stdafx.h"
#include <iostream>
using namespace std;
namespace Dijkstra
{
	const int MAX = 100;
	int	c[MAX][MAX];
	int distance[MAX];	//当前节点到源节点的最短路径长度
	int previous[MAX];	//当前节点的前一个节点

	void dijkstra(int n, int v, int distance[], int previous[], int c[][MAX])
	{
		bool s[MAX];	//是否把节点加入集合中
		for (int i = 1; i <= n; i++)
		{
			s[i] = 0;	//始终都未用过该点
			distance[i] = c[v][i];
			s[i] = 0;	 
			if (distance[i] == INT_MAX)
				previous[i] = 0;
			else previous[i] = v;
		}
		distance[v] = 0;
		s[v] = 1;

		//依次将未放入S集合的节点取distance最小值放入到集合S中
		for (int i = 2; i <= n; i++)
		{
			int u = v;
			//找出当前未使用的点j的distance[j]的最小值
			for (int j = 1; j <= n; j++)
			{
				int temp = INT_MAX;
				int u;
				for (int j = 1; j <= n; j++)
					if (!s[j] && distance[j] < temp)
					{
						u = j;	//记录T中到源节点距离最小的点
						temp = distance[j];
					}

				s[u] = 1;
				for (int j = 1; j <= n; j++)
				{
					if (!s[j] && c[u][j] < INT_MAX)
					{
						if (distance[u] + c[u][j] < distance[j])
						{
							distance[j] = distance[u] + c[u][j];
							previous[j] = u;
						}
					}
				}
			}
		}
	}
	void printPath(int* previous,int v,int u)
	{
		int pathArray[MAX];
		int temp;
		int i = 0;
		temp = previous[u];
		while (temp != v)
		{
			pathArray[i++] = temp;
			temp = previous[temp];
		}
		pathArray[i] = v;
		for (int j = i; j >= 0; j--)
		{
			cout << pathArray[j];
				cout << "->";
		}
		cout<<u<<endl;

	}

	void test()
	{
		for (int i = 0; i < MAX; i++)
		for (int j = 0; j < MAX; j++)
			c[i][j] = INT_MAX;

		c[1][2] = 10;
		c[1][4] = 30;
		c[1][5] = 100;
		c[2][3] = 50;
		c[3][5] = 10;
		c[4][3] = 20;
		c[4][5] = 60;
		dijkstra(5, 1, distance, previous, c);
		printPath(previous, 1, 2);
		printPath(previous, 1, 3);
		printPath(previous, 1, 4);
		printPath(previous, 1, 5);
	}
}
int _tmain(int argc, _TCHAR* argv[])
{
	Dijkstra::test();
	return 0;
}

运行结果:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值