分类与预测

本文介绍了分类与预测的区别,重点讨论了决策树中的ID3算法和BP神经网络算法。ID3算法基于信息熵选择最佳属性,而BP神经网络通过反向传播调整权重以减小输出误差。模型评估则使用测试集和多种误差指标。
摘要由CSDN通过智能技术生成

分类与预测

     分类和预测是预测问题的两种主要类型,分类主要是预测分类标号(离散属性),而预测主要是建立连续值函数模型,预测给定自变量对应的因变量的值。

1. 实现过程

1)分类

分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别。分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便的计算,所以分类属于有监督的学习。

2)预测

预测是建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制


2.决策树

     决策树方法在分类、预测、规则提取等领域有着广泛的应用。决策树是一树状结构,它的每一个叶节点对应着一个分类,非叶节点对应着在某个属性上的划分,根据样本在该属性上的不同取值将其划分成若干个子集。对于非纯的叶节点,多数类的标号给出达到这个节点的样本所属的类。构造决策树的核心问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值