机器学习
文章平均质量分 70
muyang_muzi
请多多指教
展开
-
学习记录
PDA数学原理:http://www.360doc.com/content/13/1124/02/9482_331688889.shtml原创 2015-04-14 22:02:01 · 493 阅读 · 0 评论 -
java实现k-means算法(用的鸢尾花iris的数据集,从mysq数据库中读取数据)
k-means算法又称k-均值算法,是机器学习聚类算法中的一种,是一种基于形心的划分方法,其中每个簇的中心都用簇中所有对象的均值来表示。其思想如下:输入:k:簇的数目;D:包含n个对象的数据集。输出:k个簇的集合。方法:从D中随机选择几个对象作为起始质心;对每个质心,计算每个数据到各个质心的距离,并把这些点分配到离该质心最短的距离的簇;对每个簇,计算簇中所有原创 2015-04-25 21:25:26 · 5725 阅读 · 3 评论 -
数据降维技术——PCA(主成分分析)
为什么要对数据进行降维? 在机器学习或者数据挖掘中,我们往往会get到大量的数据源,这些数据源往往有很多维度来表示它的属性,但是我们在实际处理中只需要其中的几个主要的属性,而其他的属性或被当成噪声处理掉。比如,13*11的源数据经过将为后变成了13*4的优化数据,那么,中间就减去了7个不必要的属性,选取了4个主要属性成分,简化了计算。 常用的数据降维方法有:主成分分析、因子分析原创 2015-05-11 16:52:43 · 7597 阅读 · 0 评论 -
国内互联网公司算法&机器学习岗(阿里星)面试总结
从2015年8月到2015年10月,花了3个月时间找工作,先后通过内推参加了美团、阿里蚂蚁金服、京东、腾讯、今日头条、Growing IO、微软这7个公司的面试,同时参加了网易游戏、LinkedI In中国这2个公司的笔试,拿到比较优质的offer是京东Star和阿里星2个Offer。应聘的岗位要么是算法工程师,要么是机器学习与数据挖掘岗,企业叫法不同,工作实质都是利用机器学习与特征工程去解决业务转载 2016-02-21 19:57:24 · 5090 阅读 · 0 评论 -
数据挖掘工程师的面试问题与答题思路
一个Java程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作。下面简要介绍下类、对象、方法和实例变量的概念。对象:对象是类的一个实例,有状态和行为。例如,一条狗是一个对象,它的状态有:颜色、名字、品种;行为有:摇尾巴、叫、吃等。类:类是一个模板,它描述一类对象的行为和状态。方法:方法就是行为,一个类可以有很多方法。逻辑运算、数据修改以及所有动作都是在方法中完成的。实例变原创 2016-06-22 22:23:12 · 8287 阅读 · 0 评论 -
回归分析
回归分析是建模和分析数据的重要工具。本文解释了回归分析的内涵及其优势,重点总结了应该掌握的线性回归、逻辑回归、多项式回归、逐步回归、岭回归、套索回归、ElasticNet回归等七种最常用的回归技术及其关键要素,最后介绍了选择正确的回归模型的关键因素。什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量原创 2016-07-19 19:47:06 · 1574 阅读 · 0 评论 -
决策树——ID3和C4.5
决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。构建决策的过程:关键步骤是分裂属性。所谓分裂属性就是在某个原创 2015-05-13 09:13:55 · 2081 阅读 · 0 评论