- 博客(1574)
- 资源 (19)
- 收藏
- 关注
原创 【Docker】使用 Docker 部署企业级密钥管理工具 HashiCorp Vault
本文详细介绍了使用Docker部署HashiCorp Vault的完整流程,包括直接运行、Docker Compose配置、初始化及基本操作。文章从环境准备开始,逐步讲解镜像拉取、两种部署模式(简单测试和生产推荐)、Vault初始化步骤,以及通过UI和API管理secret的方法。重点说明了KV v2引擎的启用和使用优势,包括版本控制功能。部署过程涉及数据持久化、安全配置等关键环节,并提供了Python SDK集成的示例。文末强调生产环境需额外配置TLS等安全措施,为开发测试和实际应用提供了实用指导。
2025-09-13 13:56:10
853
4
原创 家庭宽带443端口问题:利用HTTP/3协议实现无端口访问
在现代网络环境中,许多家庭宽带用户拥有公网IP,但往往80和443端口无法使用,这导致无法优雅的搭建个人网站或博客。本文将详细介绍如何利用HTTP/3协议结合DNS HTTPS记录(SVCB/HTTPS)实现直接通过域名访问服务。
2025-09-09 15:17:05
1033
原创 【Docker】使用 Docker 部署 Milvus 并启用认证
本文详细介绍如何在Docker中部署Milvus Standalone并启用认证功能。内容包括:前提条件检查(Docker环境、硬件配置)、通过Docker Compose下载启动服务、配置RBAC认证(修改milvus.yaml文件)、连接验证及密码修改方法,以及用户角色管理指南。文章还提供了常见问题排查建议,强调生产环境应结合TLS和外部存储。通过该指南,用户可快速搭建安全的向量数据库实例,适用于AI应用开发测试场景。
2025-09-08 12:22:10
1204
原创 【Docker】使用 Docker 部署 SearxNG 并设置代理服务器
本文介绍了如何使用Docker部署隐私保护型元搜索引擎SearxNG,并配置代理服务器增强隐私功能。主要内容包括:1)部署前提条件(Docker环境准备);2)通过Docker镜像创建SearxNG实例,配置持久化存储和网络端口;3)详细说明如何修改settings.yml配置文件设置代理服务器(支持HTTP/HTTPS/SOCKS5协议),包括全局代理和指定搜索引擎代理配置;4)提供代理性能优化建议和配置验证方法。教程适合不同经验水平的用户,帮助搭建既能保护隐私又可绕过网络限制的搜索引擎服务。
2025-09-08 12:13:21
1122
原创 【Kubernetes】什么是Kubernetes(K8s):容器编排的王者
Kubernetes(K8s)是开源的容器编排平台,自动化管理容器化应用的部署、扩展和维护。源自Google的Borg系统,现由CNCF维护,已成为云原生生态的核心。其核心概念包括Pod、Deployment、Service等,采用主从架构实现高可用管理。K8s通过声明式配置自动调度容器,支持故障恢复、滚动更新和弹性扩缩容。优势包括跨云可移植性、丰富生态和高效资源利用,但存在学习曲线陡峭和运维复杂的缺点。适用于微服务、CI/CD、AI等场景,是构建可扩展云应用的重要工具。
2025-09-05 12:13:14
1223
原创 大语言模型的幻觉:定义、原因与处理方法
本文探讨了大语言模型(LLM)中的"幻觉"现象,即模型生成看似可信但实际错误的信息。作者分析了幻觉的典型表现(如事实错误、逻辑矛盾等)及其产生原因,包括训练数据缺陷、模型架构限制和外部干扰因素。针对这一问题,文章提出了多层次的解决方案:从简单的提示工程和检索增强生成,到复杂的模型微调和后处理验证机制。作者强调,虽然完全消除幻觉尚不可行,但通过综合应用这些方法能显著提升模型输出的可靠性。文章最后指出,合理认识并管理AI的局限性,才能充分发挥其潜力。
2025-09-04 17:49:43
704
原创 【Docker】Docker容器间通信:Bridge Host None Overlay
Docker容器间通信是微服务架构的关键,本文系统介绍了其实现方式。Docker通过多种网络驱动(如bridge、host、overlay等)实现容器连接,支持同主机直接通信、跨主机集群通信等场景。核心方法包括:使用默认或自定义桥接网络实现容器间IP/名称解析;通过主机端口映射暴露服务;利用Docker Compose简化多容器编排;在Swarm集群中使用Overlay网络跨主机通信。文章还探讨了安全隔离、故障排查和性能优化等高级主题,建议从自定义网络入手,逐步扩展到复杂场景。
2025-09-04 17:41:35
687
原创 【CentOS】如何在 CentOS 7 上安装和卸载 ClamAV 的详细指南
本文详细介绍了在CentOS 7上安装、配置和卸载ClamAV防病毒软件的完整流程。主要内容包括:1)通过EPEL仓库安装ClamAV核心组件;2)配置文件设置与权限管理;3)病毒数据库更新方法;4)服务启动与测试;5)完全卸载步骤;6)常见问题解决方案。针对CentOS 7已停止支持的情况,提供了版本升级建议和跨版本兼容性说明,同时包含详细的权限配置、服务管理和错误排查指南。
2025-09-04 00:19:59
1253
原创 【Linux】dd 命令:低级别的数据复制和转换
dd 是 Linux 系统中的一个强大命令行工具,用于低级别数据复制和转换,支持磁盘克隆、数据备份、擦除、MBR 备份等功能。基本语法为 dd if=输入 of=输出 bs=块大小。常见用途包括:克隆磁盘(dd if=/dev/sda of=/dev/sdb)、创建空文件(dd if=/dev/zero of=file)、备份 MBR 等。使用时需谨慎,避免覆盖重要数据,建议检查参数并使用 status=progress 查看进度。dd 功能强大但风险较高,适合系统管理和数据恢复等专业场景。
2025-09-03 19:39:58
929
原创 【OEC-Turbo】网心云 OEC-Turbo 上运行 YOLO11 的完整教程
本文详细介绍了在网心云OEC-Turbo(RK3566芯片)上部署YOLO11目标检测模型的完整流程。从开发机环境配置(WSL Ubuntu)、模型转换(ONNX转RKNN)、交叉编译到板端运行,提供了基于rknn-toolkit2 v2.3.2的具体操作步骤。重点解决了ONNX版本兼容性、GLIBC依赖等常见问题,并给出了性能测试预期(YOLO11n INT8约34 FPS)。教程适用于已刷Armbian系统的OEC-Turbo设备,帮助开发者快速实现NPU加速的AI应用部署。
2025-09-03 17:23:01
1127
原创 【WSL】Windows 11 下 WSL 的安装、卸载及常用命令整理
本文详细介绍了Windows 11中WSL的安装、管理和使用。主要内容包括:启用WSL功能、安装Linux发行版、常用管理命令、卸载方法以及实用技巧。文章还提供了GUI应用支持和常见问题解决方案,帮助用户高效地在Windows环境下运行Linux系统。WSL为开发者提供了便捷的Linux环境,无需虚拟机即可实现跨平台开发。
2025-09-02 22:42:31
594
原创 【OEC-Turbo】网心云 OEC-Turbo 刷机 Armbian 系统之后用 RKDevInfoWriteTool 修改mac地址
本文介绍了使用RKDevInfoWriteTool修改设备MAC地址的方法。首先下载安装该工具并选择RK356X CPU类型,在设置中勾选LAN MAC选项。然后按住设备reset键连接电脑,软件识别设备后点击写入按钮即可自动生成新MAC地址(也可手动输入指定地址)。操作完成后会提示写入成功,解决多设备MAC地址冲突问题。文中附有详细操作截图和工具下载链接,并提示可能需要提前安装驱动程序。
2025-09-01 20:53:48
286
原创 【Neo4j】Neo4j 数据备份与恢复
本文全面介绍了 Neo4j 数据库的备份与恢复方法,涵盖社区版和企业版。主要内容包括: 备份方式:离线备份(社区版)、在线备份(企业版)、逻辑导出(Cypher或dump文件); 恢复方法:从文件备份恢复、在线备份恢复及逻辑导入; 最佳实践:定期备份、验证完整性、版本兼容性检查及安全存储。 适用于灾难恢复、数据迁移和版本升级等场景,确保数据安全与系统可靠性。
2025-08-30 14:00:31
936
原创 【Armbian】如何更改Docker的默认存储路径
本教程详细介绍了在Armbian系统上修改Docker默认存储路径的方法,主要内容包括:停止Docker服务、创建新存储目录、迁移数据、配置daemon.json指定新路径、启动验证等完整步骤。特别强调了权限设置、路径验证和故障排查要点,并针对SATA硬盘挂载和eMMC空间优化提供了注意事项。通过将Docker数据迁移到其他存储设备(如/ssd),可有效节省系统空间并提升性能,同时保留国内镜像加速配置。教程包含详细命令和验证方法,确保操作安全可靠。适用于包括网心云OEC-Turbo等ARM设备在内的所有设备
2025-08-25 21:29:25
782
原创 【Armbian】 在 Armbian 系统上安装 Docker
本文详细介绍了如何在Armbian系统(适用于ARM架构设备)上安装Docker并使用国内镜像加速。主要内容包括:安装前的系统准备(更新、网络检查)、通过便捷脚本或手动方式安装Docker(推荐阿里云/清华镜像源)、配置镜像加速器、可选安装Docker Compose、验证安装及常见问题排查。特别针对国内用户网络问题提供了完整的解决方案,确保顺利安装和使用Docker服务。最后还提供了简单的容器测试方法。
2025-08-25 21:13:39
1052
原创 【OEC-Turbo】网心云 OEC-Turbo 刷机 Armbian 系统教程
网心云OEC-Turbo性价比远超同类设备。其搭载RK3566四核处理器、4GB内存及SATA硬盘位,性能优于玩客云和N1盒子。通过拆机短接、刷入Armbian系统,可解锁轻量NAS、旁路由等功能。刷机需准备Type-C线、镊子等工具,使用RKDevTool写入固件,约8分钟完成。成功启动后,SSH登录默认账户root/1234,内存占用约200MB,适合折腾党低成本打造多功能服务器。
2025-08-25 20:35:21
2444
2
原创 【OEC-Turbo】SATA 硬盘挂载到根目录下的 /ssd
本文详细介绍了在Armbian系统中将SATA硬盘挂载到根目录/ssd的完整步骤。主要包括:1)使用lsblk识别硬盘设备;2)通过fdisk进行分区(新硬盘需执行);3)格式化分区为ext4文件系统;4)创建挂载点并临时挂载;5)配置/etc/fstab实现开机自动挂载;6)重启验证。需要注意的是,操作前需备份数据,确认设备名称(如/dev/sda1),并建议使用UUID方式挂载以避免设备名变化导致的问题。整个过程需root权限执行,适合网心云OEC-Turbo等设备使用。
2025-08-25 19:25:03
381
原创 基于Python和Unstructured的多格式文档处理
本文介绍了一个基于Python开发的文档解析服务,利用unstructured库和Flask框架构建,能够高效处理PDF、Word、PPT、HTML和纯文本等多种文档格式。该服务通过模块化设计实现了以下核心功能: 多格式支持:统一处理常见文档格式,包括PDF、Word(.docx)、PPT(.pptx)、HTML和纯文本(.txt/.md) 结构化输出:提取文本内容、文档元素(标题/段落/表格等)和元数据(作者/创建时间等) Web接口:提供RESTful
2025-08-06 14:46:17
942
原创 【Sophon LLMOps】什么是Jsonnet
Jsonnet 是一种强大且灵活的配置语言,通过结合 JSON 的结构化和编程语言的逻辑能力,解决了复杂 JSON 配置的重复性和维护难题。它在基础设施管理、DevOps 和数据管道中应用广泛,尤其适合需要动态生成配置的场景。对于 Transwarp Sophon LLMOps 用户,Jsonnet 可作为生成模型或应用配置的辅助工具,比如使用Jsonnet胶水代码提取转换JSON数据,提升配置管理开发的效率。
2025-07-31 11:21:30
690
原创 【Dify】如何使用Dify
使用 Dify 开发大模型应用是一个相对直观的过程,适合从初学者到高级开发者。以下是详细的 Dify 使用指南,以条例清晰的方式,涵盖从安装到创建、优化和部署应用的完整流程。内容包括环境搭建、应用创建、核心功能使用(提示词、知识库、工具、工作流等)、API 集成以及常见问题处理。无论是想快速上手还是深入开发,都可以参考本文的步骤。
2025-07-10 18:50:06
1811
2
原创 【Dify】什么是Dify
Dify 是一个开源的大模型应用开发平台,旨在帮助开发者、团队甚至非技术人员快速构建和部署基于大语言模型(LLM)的应用程序。它通过低代码、模块化的方式简化了 AI 应用的开发流程,支持多种场景,如对话机器人、文本生成、知识库检索(RAG)、工作流自动化等。Dify 的设计目标是降低 AI 应用开发的门槛,同时提供灵活的定制能力,适用于个人开发者、企业团队以及 AI 初学者。本文是对 Dify 的详细介绍,涵盖其定义、核心功能、应用场景、技术架构、优势与局限性等方面,结构清晰,条例分明。
2025-07-10 18:42:08
1089
2
原创 【毕昇】如何使用毕昇(Bisheng)
毕昇通过模块化设计和可视化界面,极大降低了 LLM 应用的开发门槛。其核心优势在于 ETL4LLM 的数据处理能力和企业级支持,适合从简单问答到复杂 Agent 的开发。使用流程包括:1.部署平台(Docker Compose 或 Kubernetes)。2.配置模型和知识库。3.使用构建模块设计 Prompt 和工作流。4.测试和优化应用。
2025-07-08 19:43:07
1574
4
原创 【毕昇】什么是毕昇(Bisheng)
毕昇(Bisheng) 是一个开源大模型应用开发平台,专为企业级场景设计,旨在帮助开发者、业务人员以及企业快速构建、部署和管理基于大语言模型(LLM)的智能应用。平台以中国古代活字印刷术发明人毕昇命名,寓意推动知识和智能应用的广泛传播与高效开发。本文是对毕昇的详细介绍,涵盖其背景、核心功能、技术架构、应用场景、优势以及与其他平台的对比。
2025-07-08 19:37:37
2280
原创 【Sophon LLMOps】什么是 Go Template 语法
Go Template 语法 是 Go 编程语言中用于生成动态内容的模板引擎语法,主要由 Go 的标准库 text/template 和 html/template 包提供。它广泛应用于生成 HTML 页面、配置文件、文本输出等场景,特别是在 Web 开发、CLI 工具或自动化脚本中。Go Template 语法设计简洁,基于占位符和指令,允许开发者将数据动态嵌入到模板中,同时支持条件判断、循环、变量定义等逻辑控制。Go Template 语法在 Sophon LLMOps 平台中的存在应用(如配置提示
2025-07-02 09:33:28
1001
2
原创 【Sophon LLMOps】如何使用Transwarp Sophon LLMOps
Transwarp Sophon LLMOps 平台通过模块化的功能设计,提供了从语料管理到应用部署的端到端解决方案。以下是快速上手的总结步骤:登录并配置账号权限。上传并清洗语料,构建知识库。选择或训练模型,优化性能。使用零代码、低代码或编程方式开发应用。利用企业级管理功能确保安全和协作。
2025-07-02 09:24:22
674
原创 【Sophon LLMOps】什么是 Transwarp Sophon LLMOps?
Transwarp Sophon LLMOps 是由星环科技(Transwarp Technology)开发的一款企业级大模型全生命周期运营管理平台,旨在帮助企业和开发者高效地开发、训练、部署和管理大型语言模型(LLM)及相关应用。它通过集成化的工具链和模块化功能,覆盖从语料处理、模型训练、知识管理到应用开发、部署及运维的全流程,适用于多种业务场景(如智能客服、知识问答、内容生成等)。本文是对 Sophon LLMOps 的详细介绍,内容清晰、条理分明,涵盖其定义、核心功能、架构设计、应用场景及优势。
2025-07-02 09:20:29
891
原创 【LangChain】langchain.chains.history_aware_retriever.create_history_aware_retriever函数:创建结合对话历史进行语义检索链
create_history_aware_retriever 是 LangChain 库中的一个函数,位于 langchain.chains.history_aware_retriever 模块。它用于创建一个能够结合对话历史进行语义检索的链(chain),特别适合需要上下文感知的检索增强生成(RAG)场景。该函数通过语言模型(LLM)重构用户查询,结合历史对话上下文生成更精准的查询,从而从向量存储或其他检索器中获取相关文档。核心参数:llm:语言模型,用于查询重构。retriever:底层检索器,执行文档
2025-06-16 00:04:29
1370
原创 【LangChain】langchain_community.document_transformers 模块下的类和函数列举:多种文档转换器
langchain_community.document_transformers 模块是 LangChain 社区库的一部分,提供了多种文档转换器,用于处理、清洗、增强或转换文档内容。这些转换器主要用于文档预处理,适用于检索增强生成(RAG)、数据提取、文本清洗等场景。BeautifulSoupTransformer、DoctranPropertyExtractor、DoctranQATransformer、DoctranTextTranslator、EmbeddingsClusteringFilter、
2025-06-15 23:28:33
853
4
原创 【Python】threading 模块:用于实现多线程编程
Python 的 threading 模块是标准库的一部分,用于实现多线程编程,适合处理 I/O 密集型任务(如网络请求、文件读写),支持 Thread、Lock、Semaphore、Event、Queue、Timer 等。由于 Python 的全局解释器锁(GIL)限制,threading 不适合 CPU 密集型任务(这些任务应使用 multiprocessing)。threading 提供了创建和管理线程的 API,支持线程同步、通信和定时执行,接口简单且跨平台。本文将详细介绍 threading 模块
2025-06-15 23:07:01
1114
原创 【Python】multiprocessing 模块:实现多进程并行计算
Python 的 multiprocessing 模块是一个标准库模块,用于实现多进程并行计算。它通过创建独立的进程,绕过 Python 的全局解释器锁(GIL),在多核 CPU 上实现真正的并行,特别适合 CPU 密集型任务(如数值计算、图像处理),支持 Process、Pool、Queue、Pipe、Lock 等。相比线程(threading 模块),multiprocessing 更适合需要高性能计算的场景。本文将详细介绍 multiprocessing 模块的定义、功能、用法、示例、应用场景、最佳实
2025-06-15 23:00:06
975
原创 【Python】Gym 库:于开发和比较强化学习(Reinforcement Learning, RL)算法
Gym 是 Python 中一个广泛使用的开源库,用于开发和比较强化学习(Reinforcement Learning, RL)算法。它最初由 OpenAI 开发,提供标准化的环境接口,允许开发者在各种任务(如游戏、机器人控制、模拟物理系统)中测试 RL 算法。Gym 的设计简单且灵活,适合学术研究和工业应用。2022 年,Gym 被整合到 Gymnasium(由 Farama Foundation 维护)中,成为主流的强化学习环境库。本文以 Gymnasium(gymnasium)为基础,兼容旧版 Gym
2025-06-15 11:32:16
1533
原创 【RLHF】对抗偏好优化(Adversarial Preference Optimization, APO):通过对抗学习解决语言模型生成响应分布与人类偏好数据分布之间的漂移问题
对抗偏好优化(Adversarial Preference Optimization, APO) 是一种新颖的 RLHF 框架,旨在通过对抗学习(adversarial learning)解决语言模型(LLM)生成响应分布与人类偏好数据分布之间的漂移问题(sampling distribution shifting)。APO 通过在语言模型(LLM)和奖励模型(RM)之间进行类似于生成对抗网络(GAN)的最小-最大博弈(min-max game),实现高效的人类偏好对齐,而无需对新生成样本进行额外的人类偏好
2025-06-15 11:31:50
994
原创 【RLHF】直接偏好优化(Direct Preference Optimization, DPO):基于偏好数据优化语言模型
直接偏好优化(DPO) 是一种高效、简单的 RLHF 替代方法,通过直接基于偏好数据优化语言模型,省去了奖励模型和强化学习步骤。DPO 将偏好对齐问题转化为分类任务,利用语言模型的隐式奖励函数,性能与 PPO 相当(如胜率 ~70%),但训练成本显著降低(单 GPU 数小时)。其简单性和稳定性使其适合快速开发和资源受限场景,但对偏好数据质量依赖较高,缺乏 PPO 的动态探索能力。DPO 的提出简化了 RLHF 流程,为大语言模型对齐提供了新范式,未来可与 RLAIF 等技术结合,进一步提升效率和扩展性。
2025-06-15 11:31:21
996
原创 【RLHF】近端策略优化(Proximal Policy Optimization, PPO):优化语言模型以对齐人类偏好的核心强化学习算法
近端策略优化(PPO) 是 RLHF 中用于优化语言模型以对齐人类偏好的核心强化学习算法。它通过裁剪目标函数或 KL 正则化限制策略更新幅度,确保训练稳定性。PPO 在 RLHF 和 RLAIF 中表现出色,广泛应用于对话生成、文本摘要等任务,显著提升模型性能(如胜率 70%+)。尽管需要多个模型和在线采样,PPO 的简单性和鲁棒性使其成为行业标准。然而,其计算成本和超参数调优空间,促使研究者探索更高效的替代方法(如 DPO、RRHF、d-RLAIF)。在未来,PPO 与其他技术的结合可能进一步提升 RLH
2025-06-15 11:30:47
1166
原创 【RLHF】RLAIF( Scaling Reinforcement Learning from Human Feedback with AI Feedback):利用人工智能生成偏好标签来训练奖励模
RLAIF 是一种通过使用现成的(off-the-shelf)大语言模型生成偏好标签来训练奖励模型(Reward Model, RM),并利用该奖励模型进行强化学习,从而优化语言模型输出的方法。相比 RLHF 依赖人类标注的高质量偏好数据,RLAIF 利用 AI 模型(如 PaLM 2、ChatGPT 等)生成偏好标签,显著降低了数据收集的成本和时间。
2025-06-15 11:30:21
854
原创 【RLHF】RRHF(Rank Responses to Align Language Models with Human Feedback):基于人类反馈的排序学习
RRHF(Rank Responses to Align Language Models with Human Feedback)是一种新型的基于人类反馈的强化学习方法,旨在通过排名损失(ranking loss)将语言模型的输出与人类偏好对齐。RRHF 通过对来自不同来源的响应(如模型自身生成、其他大语言模型生成或人类专家提供)进行评分和排名,优化语言模型,使其生成更符合人类期望的输出。
2025-06-15 11:29:47
566
原创 【PyTorch】torch.multiprocessing 模块:在多个进程间共享和操作张量、模型等资源
torch.multiprocessing 是 PyTorch 提供的一个模块,用于在多个进程间共享和操作张量、模型等资源,支持并行计算和训练。它是对 Python 标准库 multiprocessing 的扩展,特别优化了与 PyTorch 张量和 CUDA 的集成,适用于多进程任务,如数据加载、模型训练等。
2025-06-15 11:28:17
1158
原创 【PyTorch】torch.nn.parallel:提供了多种工具来实现模型的并行计算
torch.nn.parallel 是 PyTorch 的一个模块,提供了多种工具来实现模型的并行计算,主要是为了加速训练或处理大规模模型。它支持数据并行、分布式数据并行等方法,适用于单机多 GPU 或多机多 GPU 场景。
2025-06-15 11:27:40
1054
原创 【PyTorch】torch.nn.parallel.DistributedDataParallel (DDP):在分布式训练中实现数据并行
torch.nn.parallel.DistributedDataParallel (DDP) 是 PyTorch 提供的一个类,用于在分布式训练中实现数据并行。它允许多个进程(可能分布在多个 GPU 或多个节点上)协同训练同一个模型,通过高效的梯度同步来加速训练。相比 torch.nn.DataParallel,DDP 更高效,支持多节点训练,是 PyTorch 分布式训练的首选工具。
2025-06-15 11:27:09
919
原创 【PyTorch】torch.distributed 模块:支持分布式训练和计算
torch.distributed 是 PyTorch 提供的一个模块,用于支持分布式训练和计算。它允许在多个进程、多个 GPU 甚至多个节点(机器)之间协同工作,适用于数据并行、模型并行等场景。torch.distributed 提供了进程间通信的工具(如集合通信操作)和分布式训练的关键组件,配合工具如 torchrun 可以轻松启动分布式任务。
2025-06-15 11:26:29
1093
基于Python和Unstructured的多格式文档处理
2025-08-06
电影图数据库构造:基于Cypher查询语句创建影人关系网及其应用,Neo4j数据库 Movie Graph Guide 案例数据
2025-03-18
neo4j的配置文件,包含:neo4j.conf、neo4j-admin.conf、server-logs.xml、user-l
2025-03-17
Python基于toad实现生成评分卡 完整的示例代码和数据集
2025-01-05
toad.selection.select函数示例的数据集和代码
2025-01-03
toad.selection.stepwise函数示例的数据集和代码
2025-01-03
Metropolis-Hastings算法和吉布斯采样(Gibbs sampling)算法Python代码实现
2024-12-23
维特比算法Python代码实现
2024-12-09
EM算法Python代码实现
2024-11-29
朴素贝叶斯分类器算法Python代码实现
2024-11-25
PCA算法Python代码实现
2024-11-17
随机森林(Random Forest)算法Python代码实现
2024-11-13
CatBoost使用示例
2024-11-12
XGBoost算法Python代码实现
2024-11-09
GBDT算法Python代码实现
2024-11-03
AdaBoost算法Python代码实现
2024-10-31
近似线性可分支持向量机Python代码实现
2024-10-27
构建ID3决策树的完整算法代码
2024-10-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人