《贝叶斯定理简介》21-1贝叶斯定理的概率分布形式 归一化后验分布的分母∫L(θ∣X)π(θ)dθ详解

贝叶斯定理简介
  |----【《贝叶斯定理简介》21-1贝叶斯定理的概率分布形式 公式解析


公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 是贝叶斯定理中非常重要的一部分,它出现在贝叶斯公式的分母中,用于 归一化后验分布。以下是对这个公式的详细讲解,包括其背景、作用、数学性质以及实际应用。


公式回顾

贝叶斯定理的分布形式:
π ( θ ∣ X ) = L ( θ ∣ X ) π ( θ ) ∫ L ( θ ∣ X ) π ( θ ) d θ \pi(\theta|X) = \frac{L(\theta|X) \pi(\theta)}{\int L(\theta|X) \pi(\theta) d\theta} π(θX)=L(θX)π(θ)dθL(θX)π(θ)

  • 其中,分母部分 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 被称为 边际似然归一化常数

1. 公式的数学意义

  1. 积分含义

    • 公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 是对所有可能的参数值 θ \theta θ 求和(连续情况下为积分)。
    • 它表示 数据 X X X 的边际概率( P ( X ) P(X) P(X),即:
      P ( X ) = ∫ L ( θ ∣ X ) π ( θ ) d θ P(X) = \int L(\theta|X) \pi(\theta) d\theta P(X)=L(θX)π(θ)dθ
  2. 作用

    • 归一化:确保后验分布 π ( θ ∣ X ) \pi(\theta|X) π(θX) 是一个合法的概率分布,其积分为 1。
      ∫ π ( θ ∣ X ) d θ = 1 \int \pi(\theta|X)d\theta = 1 π(θX)dθ=1

2. 各部分解释

L ( θ ∣ X ) L(\theta|X) L(θX):似然函数
  • 表示在参数值为 θ \theta θ 时,观察到数据 X X X 的概率。
  • 作用:反映数据对参数 θ \theta θ 的支持程度。
  • 例子:在抛硬币问题中,若观察到正面次数为 k k k,似然函数为:
    L ( θ ∣ X ) = ( n k ) θ k ( 1 − θ ) n − k L(\theta|X) = \binom{n}{k} \theta^k (1-\theta)^{n-k} L(θX)=(kn)θk(1θ)nk
π ( θ ) \pi(\theta) π(θ):先验分布
  • 表示在没有观察数据 X X X 前,对参数 θ \theta θ 的初始信念。
  • 作用:为参数值提供先验知识或假设。
∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ:边际似然
  • 定义:在所有可能参数值 θ \theta θ 上,对联合分布 L ( θ ∣ X ) π ( θ ) L(\theta|X)\pi(\theta) L(θX)π(θ) 的积分。
  • 意义
    • 表示数据 X X X 的总体概率(边际概率)。
    • π ( θ ∣ X ) \pi(\theta|X) π(θX) 归一化,使其成为概率分布。

3. 公式的作用

  1. 归一化后验分布

    • 后验分布 π ( θ ∣ X ) \pi(\theta|X) π(θX) 是通过贝叶斯定理计算的,需要归一化以保证其合法性(积分为 1)。
    • 分母 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 就是归一化因子。
  2. 比较模型的优劣

    • 在模型选择中,可以通过边际似然比较不同模型的优劣。
    • 例如,在贝叶斯模型选择中,较高的 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 值表示模型对数据的解释能力更强。
  3. 预测新数据

    • 用于计算预测分布:
      P ( X new ∣ X ) = ∫ P ( X new ∣ θ ) π ( θ ∣ X ) d θ P(X_{\text{new}}|X) = \int P(X_{\text{new}}|\theta) \pi(\theta|X) d\theta P(XnewX)=P(Xnewθ)π(θX)dθ

4. 一个具体的例子

场景:抛硬币问题

假设我们进行了一次抛硬币实验,观察到 n n n 次试验中正面出现了 k k k 次。目标是通过贝叶斯公式更新对硬币正面概率 θ \theta θ 的信念。

  1. 似然函数
    L ( θ ∣ X ) = ( n k ) θ k ( 1 − θ ) n − k L(\theta|X) = \binom{n}{k} \theta^k (1-\theta)^{n-k} L(θX)=(kn)θk(1θ)nk

  2. 先验分布(假设均匀分布):
    π ( θ ) = 1 ( θ ∈ [ 0 , 1 ] ) \pi(\theta) = 1 \quad \text{($\theta \in [0,1]$)} π(θ)=1θ[0,1]

  3. 边际似然(归一化因子)
    ∫ L ( θ ∣ X ) π ( θ ) d θ = ∫ 0 1 ( n k ) θ k ( 1 − θ ) n − k d θ \int L(\theta|X)\pi(\theta)d\theta = \int_0^1 \binom{n}{k} \theta^k (1-\theta)^{n-k} d\theta L(θX)π(θ)dθ=01(kn)θk(1θ)nkdθ
    这是 Beta 分布的归一化常数,结果为:
    ∫ L ( θ ∣ X ) π ( θ ) d θ = ( n k ) k ! ( n − k ) ! ( n + 1 ) ! \int L(\theta|X)\pi(\theta)d\theta = \binom{n}{k} \frac{k!(n-k)!}{(n+1)!} L(θX)π(θ)dθ=(kn)(n+1)!k!(nk)!

  4. 后验分布
    π ( θ ∣ X ) = L ( θ ∣ X ) π ( θ ) ∫ L ( θ ∣ X ) π ( θ ) d θ \pi(\theta|X) = \frac{L(\theta|X)\pi(\theta)}{\int L(\theta|X)\pi(\theta)d\theta} π(θX)=L(θX)π(θ)dθL(θX)π(θ)
    代入后得到:
    π ( θ ∣ X ) = Beta ( k + 1 , n − k + 1 ) \pi(\theta|X) = \text{Beta}(k+1, n-k+1) π(θX)=Beta(k+1,nk+1)


5. 挑战

  1. 计算复杂性

    • 在高维参数空间中,边际似然的积分计算可能非常复杂,难以解析求解。
    • 常用 数值方法(如蒙特卡洛积分、MCMC 方法)来估计。
  2. 先验分布的选择

    • 先验分布对结果影响较大,因此需要合理选择先验。

6. 总结

公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta L(θX)π(θ)dθ 是贝叶斯公式的关键部分:

  • 表示数据的边际概率。
  • 用于归一化后验分布。
  • 在模型比较和预测中有重要作用。


贝叶斯定理推导硬币正面概率θ的后验分布 计算示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值