《贝叶斯定理简介》
|----【《贝叶斯定理简介》21-1贝叶斯定理的概率分布形式 公式解析】
公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 是贝叶斯定理中非常重要的一部分,它出现在贝叶斯公式的分母中,用于 归一化后验分布。以下是对这个公式的详细讲解,包括其背景、作用、数学性质以及实际应用。
公式回顾
贝叶斯定理的分布形式:
π
(
θ
∣
X
)
=
L
(
θ
∣
X
)
π
(
θ
)
∫
L
(
θ
∣
X
)
π
(
θ
)
d
θ
\pi(\theta|X) = \frac{L(\theta|X) \pi(\theta)}{\int L(\theta|X) \pi(\theta) d\theta}
π(θ∣X)=∫L(θ∣X)π(θ)dθL(θ∣X)π(θ)
- 其中,分母部分 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 被称为 边际似然 或 归一化常数。
1. 公式的数学意义
-
积分含义:
- 公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 是对所有可能的参数值 θ \theta θ 求和(连续情况下为积分)。
- 它表示 数据
X
X
X 的边际概率(
P
(
X
)
P(X)
P(X)),即:
P ( X ) = ∫ L ( θ ∣ X ) π ( θ ) d θ P(X) = \int L(\theta|X) \pi(\theta) d\theta P(X)=∫L(θ∣X)π(θ)dθ
-
作用:
- 归一化:确保后验分布
π
(
θ
∣
X
)
\pi(\theta|X)
π(θ∣X) 是一个合法的概率分布,其积分为 1。
∫ π ( θ ∣ X ) d θ = 1 \int \pi(\theta|X)d\theta = 1 ∫π(θ∣X)dθ=1
- 归一化:确保后验分布
π
(
θ
∣
X
)
\pi(\theta|X)
π(θ∣X) 是一个合法的概率分布,其积分为 1。
2. 各部分解释
L ( θ ∣ X ) L(\theta|X) L(θ∣X):似然函数
- 表示在参数值为 θ \theta θ 时,观察到数据 X X X 的概率。
- 作用:反映数据对参数 θ \theta θ 的支持程度。
- 例子:在抛硬币问题中,若观察到正面次数为
k
k
k,似然函数为:
L ( θ ∣ X ) = ( n k ) θ k ( 1 − θ ) n − k L(\theta|X) = \binom{n}{k} \theta^k (1-\theta)^{n-k} L(θ∣X)=(kn)θk(1−θ)n−k
π ( θ ) \pi(\theta) π(θ):先验分布
- 表示在没有观察数据 X X X 前,对参数 θ \theta θ 的初始信念。
- 作用:为参数值提供先验知识或假设。
∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ:边际似然
- 定义:在所有可能参数值 θ \theta θ 上,对联合分布 L ( θ ∣ X ) π ( θ ) L(\theta|X)\pi(\theta) L(θ∣X)π(θ) 的积分。
- 意义:
- 表示数据 X X X 的总体概率(边际概率)。
- 将 π ( θ ∣ X ) \pi(\theta|X) π(θ∣X) 归一化,使其成为概率分布。
3. 公式的作用
-
归一化后验分布:
- 后验分布 π ( θ ∣ X ) \pi(\theta|X) π(θ∣X) 是通过贝叶斯定理计算的,需要归一化以保证其合法性(积分为 1)。
- 分母 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 就是归一化因子。
-
比较模型的优劣:
- 在模型选择中,可以通过边际似然比较不同模型的优劣。
- 例如,在贝叶斯模型选择中,较高的 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 值表示模型对数据的解释能力更强。
-
预测新数据:
- 用于计算预测分布:
P ( X new ∣ X ) = ∫ P ( X new ∣ θ ) π ( θ ∣ X ) d θ P(X_{\text{new}}|X) = \int P(X_{\text{new}}|\theta) \pi(\theta|X) d\theta P(Xnew∣X)=∫P(Xnew∣θ)π(θ∣X)dθ
- 用于计算预测分布:
4. 一个具体的例子
场景:抛硬币问题
假设我们进行了一次抛硬币实验,观察到 n n n 次试验中正面出现了 k k k 次。目标是通过贝叶斯公式更新对硬币正面概率 θ \theta θ 的信念。
-
似然函数:
L ( θ ∣ X ) = ( n k ) θ k ( 1 − θ ) n − k L(\theta|X) = \binom{n}{k} \theta^k (1-\theta)^{n-k} L(θ∣X)=(kn)θk(1−θ)n−k -
先验分布(假设均匀分布):
π ( θ ) = 1 ( θ ∈ [ 0 , 1 ] ) \pi(\theta) = 1 \quad \text{($\theta \in [0,1]$)} π(θ)=1(θ∈[0,1]) -
边际似然(归一化因子):
∫ L ( θ ∣ X ) π ( θ ) d θ = ∫ 0 1 ( n k ) θ k ( 1 − θ ) n − k d θ \int L(\theta|X)\pi(\theta)d\theta = \int_0^1 \binom{n}{k} \theta^k (1-\theta)^{n-k} d\theta ∫L(θ∣X)π(θ)dθ=∫01(kn)θk(1−θ)n−kdθ
这是 Beta 分布的归一化常数,结果为:
∫ L ( θ ∣ X ) π ( θ ) d θ = ( n k ) k ! ( n − k ) ! ( n + 1 ) ! \int L(\theta|X)\pi(\theta)d\theta = \binom{n}{k} \frac{k!(n-k)!}{(n+1)!} ∫L(θ∣X)π(θ)dθ=(kn)(n+1)!k!(n−k)! -
后验分布:
π ( θ ∣ X ) = L ( θ ∣ X ) π ( θ ) ∫ L ( θ ∣ X ) π ( θ ) d θ \pi(\theta|X) = \frac{L(\theta|X)\pi(\theta)}{\int L(\theta|X)\pi(\theta)d\theta} π(θ∣X)=∫L(θ∣X)π(θ)dθL(θ∣X)π(θ)
代入后得到:
π ( θ ∣ X ) = Beta ( k + 1 , n − k + 1 ) \pi(\theta|X) = \text{Beta}(k+1, n-k+1) π(θ∣X)=Beta(k+1,n−k+1)
5. 挑战
-
计算复杂性:
- 在高维参数空间中,边际似然的积分计算可能非常复杂,难以解析求解。
- 常用 数值方法(如蒙特卡洛积分、MCMC 方法)来估计。
-
先验分布的选择:
- 先验分布对结果影响较大,因此需要合理选择先验。
6. 总结
公式 ∫ L ( θ ∣ X ) π ( θ ) d θ \int L(\theta|X)\pi(\theta)d\theta ∫L(θ∣X)π(θ)dθ 是贝叶斯公式的关键部分:
- 表示数据的边际概率。
- 用于归一化后验分布。
- 在模型比较和预测中有重要作用。