深度学习中如何对模型参数进行分组优化

深度学习中如何对模型参数进行分组优化

在深度学习中,不同的参数(如权重和偏置、不同层的参数)可能需要不同的优化策略。常见的做法是对 不同参数组使用不同的学习率、权重衰减(L2正则化)或优化算法,这被称为 参数分组优化(Grouped Parameter Optimization)


1. 为什么需要分组优化?

  1. 不同类型的参数可能需要不同的学习率

    • 卷积层权重 可能需要较小的学习率以稳定训练。
    • 全连接层权重 可能需要较大的学习率以加速收敛。
  2. 权重和偏置的处理方式不同

    • 通常对权重使用权重衰减(L2 正则化),以防止过拟合。
    • 偏置项通常不使用权重衰减
  3. 不同层次的参数可使用不同优化策略

    • 预训练模型的底层参数可以使用较小的学习率,避免破坏已有的特征提取能力。
    • 高层参数使用较大的学习率,以便适应新的任务。

2. 如何实现参数分组优化?

在 PyTorch 中,可以使用 param_groups 进行参数分组,然后传递给优化器。

示例 1:基础参数分组

import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的神经网络
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
        self.fc1 = nn.Linear(32 * 8 * 8, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.relu(self.conv2(x))
        x = x.view(x.size(0), -1)  # Flatten
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = SimpleModel()

# 定义参数组
param_groups = [
    {"params": model.conv1.parameters(), "lr": 0.001},  # 第一层卷积较低学习率
    {"params": model.conv2.parameters(), "lr": 0.001},  # 第二层卷积较低学习率
    {"params": model.fc1.parameters(), "lr": 0.01},  # 全连接层较高学习率
    {"params": model.fc2.parameters(), "lr": 0.01}   # 输出层较高学习率
]

# 使用 Adam 优化器
optimizer = optim.Adam(param_groups)

# 打印优化器参数
for i, group in enumerate(optimizer.param_groups):
    print(f"Group {i}: Learning Rate = {group['lr']}")

解析:

  • 卷积层 conv1conv2 使用较小的学习率 0.001,以稳定训练。
  • 全连接层 fc1fc2 使用较大的学习率 0.01,以加快训练。

示例 2:为权重和偏置项使用不同优化策略

在优化过程中,我们可以 为权重和偏置项设置不同的权重衰减参数(L2 正则化)

# 过滤出权重和偏置
param_groups = [
    {"params": [param for name, param in model.named_parameters() if "bias" not in name], "weight_decay": 1e-4},  # 只对权重使用 L2 正则化
    {"params": [param for name, param in model.named_parameters() if "bias" in name], "weight_decay": 0}  # 偏置不使用 L2 正则化
]

# 使用 SGD 进行优化
optimizer = optim.SGD(param_groups, lr=0.01, momentum=0.9)

# 打印优化器参数
for i, group in enumerate(optimizer.param_groups):
    print(f"Group {i}: Weight Decay = {group['weight_decay']}")

解析:

  • 第一组参数(bias 以外的权重)使用 weight_decay=1e-4 进行 L2 正则化,防止过拟合。
  • 第二组参数(bias)不使用权重衰减,避免影响偏置项的更新。

示例 3:冻结部分层,仅微调部分参数

在使用 预训练模型(如 ResNet、BERT) 时,我们通常 冻结底层特征提取层,仅对高层进行微调

import torchvision.models as models

# 加载预训练的 ResNet
model = models.resnet18(pretrained=True)

# 冻结所有参数
for param in model.parameters():
    param.requires_grad = False

# 替换 ResNet 的最后一层
model.fc = nn.Linear(512, 10)

# 仅优化 `fc` 层
optimizer = optim.Adam(model.fc.parameters(), lr=0.01)

# 打印需要训练的参数
for name, param in model.named_parameters():
    if param.requires_grad:
        print(f"Trainable: {name}")

解析:

  • 所有层参数 requires_grad=False,避免更新底层权重
  • 仅更新 fc 层,以适应新任务

示例 4:使用不同优化算法

有时候,我们可能希望 不同的参数组使用不同的优化算法,如:

  • CNN 层使用 Adam
  • 全连接层使用 SGD
  • 部分层使用 RMSprop
# 定义不同优化器
optimizer_cnn = optim.Adam([
    {"params": model.conv1.parameters(), "lr": 0.001},
    {"params": model.conv2.parameters(), "lr": 0.001}
])

optimizer_fc = optim.SGD([
    {"params": model.fc1.parameters(), "lr": 0.01},
    {"params": model.fc2.parameters(), "lr": 0.01}
], momentum=0.9)

# 训练时分别更新
for batch in data_loader:
    optimizer_cnn.zero_grad()
    optimizer_fc.zero_grad()
    
    outputs = model(batch)
    loss = loss_fn(outputs, target)
    
    loss.backward()
    
    optimizer_cnn.step()
    optimizer_fc.step()

解析:

  • CNN 层使用 Adam,适合复杂结构
  • 全连接层使用 SGD,更适合梯度稳定的层

3. 结论

参数分组优化在深度学习中至关重要,常见应用包括:

  1. 不同层使用不同学习率(如 CNN 层较低,FC 层较高)。
  2. 对权重使用 L2 正则化,对偏置不使用
  3. 冻结底层,仅微调高层(如 ResNet、BERT 微调)
  4. 不同层使用不同优化算法(如 CNN 用 Adam,FC 用 SGD)

通过 param_groups,可以灵活地控制不同参数的优化策略,提高训练效率和模型性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值