LangGraph 图定义
LangGraph 是一个强大的框架,用于构建需要状态管理的复杂 LLM(大型语言模型)工作流。以下内容参考 LangGraph 官方文档中的 Graph Definitions 部分,涵盖了 StateGraph
、CompiledStateGraph
和 add_messages
函数的详细描述。内容以清晰的结构呈现,适合开发者学习和理解 LangGraph。
1. 类 StateGraph
继承自: Graph
描述:
StateGraph
是一个图,其节点通过读写共享状态进行通信。每个节点的签名是 State -> Partial
,即接收状态并返回部分更新。状态的每个键可以选择性地使用 reducer
函数来聚合同一键的多个更新值,reducer
函数的签名是 (Value, Value) -> Value
。
1.1 参数
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
state_schema | Optional[type[Any]] | 定义状态的 schema 类。 | None |
config_schema | Optional[type[Any]] | 定义配置的 schema 类,用于在 API 中暴露可配置参数。 | None |
1.2 示例
以下示例展示如何使用 StateGraph
创建一个简单的图,计算逻辑斯蒂映射序列:
from langchain_core.runnables import RunnableConfig
from typing_extensions import Annotated, TypedDict
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph
# 定义 reducer 函数,用于合并状态值
def reducer(a: list, b: int | None) -> list:
if b is not None:
return a + [b] # 如果 b 不为空,则追加到列表 a 中
return a
# 定义状态类
class State(TypedDict):
x: Annotated[list, reducer] # x 是一个列表,使用 reducer 函数注解
# 定义配置 schema
class ConfigSchema(TypedDict):
r: float # 配置参数 r,类型为浮点数
# 创建 StateGraph 实例
graph = StateGraph(State, config_schema=ConfigSchema)
# 定义节点函数
def node(state: State, config: RunnableConfig) -> dict:
r = config["configurable"].get("r", 1.0) # 获取配置中的 r,默认为 1.0
x = state["x"][-1] # 获取状态中 x 的最后一个值
next_value = x * r * (1 - x) # 计算逻辑斯蒂映射的下一个值
return {"x": next_value} # 返回更新后的状态
# 添加节点并设置入口和出口
graph.add_node("A", node) # 添加名为 "A" 的节点
graph.set_entry_point("A") # 设置入口点为 "A"
graph.set_finish_point("A") # 设置结束点为 "A"
# 编译图
compiled = graph.compile()
# 打印配置规格
print(compiled.config_specs)
# 输出: [ConfigurableFieldSpec(id='r', annotation=<class 'float'>, name=None, description=None, default=None, is_shared=False, dependencies=None)]
# 调用图并传入初始状态和配置
step1 = compiled.invoke({"x": [0.5]}, {"configurable": {"r": 3.0}})
# 输出: {'x': [0.5, 0.75]}
1.3 方法
名称 | 描述 |
---|---|
add_node | 向状态图中添加一个新节点。 |
add_edge | 从起始节点(或起始节点列表)到结束节点添加一个有向边。 |
add_conditional_edges | 从起始节点到任意数量的目标节点添加一个条件边。 |
add_sequence | 添加一个按提供顺序执行的节点序列。 |
compile | 将状态图编译为 CompiledStateGraph 对象。 |
1.3.1 方法 add_node
add_node(
node: Union[str, RunnableLike],
action: Optional[RunnableLike] = None,
*,
defer: bool = False,
metadata: Optional[dict[str, Any]] = None,
input: Optional[type[Any]] = None,
retry: Optional[Union[RetryPolicy, Sequence[RetryPolicy]]] = None,
cache_policy: Optional[CachePolicy] = None,
destinations: Optional[Union[dict[str, str], tuple[str, ...]]] = None
) -> Self
描述:
向状态图中添加一个新节点。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
node | Union[str, RunnableLike] | 这个节点将运行的函数或 runnable 。如果提供的是字符串,它将被用作节点名称,action 将被用作函数或 runnable 。 | 必填 |
action | Optional[RunnableLike] | 与节点关联的动作。如果 node 是字符串,则用作节点函数或 runnable 。 | None |
defer | bool | 是否推迟节点的执行,直到运行即将结束。 | False |
metadata | Optional[dict[str, Any]] | 与节点关联的元数据。 | None |
input | Optional[type[Any]] | 节点的输入 schema,默认使用图的输入 schema。 | None |
retry | Optional[Union[RetryPolicy, Sequence[RetryPolicy]]] | 节点的重试策略。如果提供的是序列,将应用第一个匹配的策略。 | None |
cache_policy | Optional[CachePolicy] | 节点的缓存策略。 | None |
destinations | Optional[Union[dict[str, str], tuple[str, ...]]] | 指示节点可以路由到的目标,用于无边图的渲染,不影响执行。 | None |
引发异常:
ValueError
:如果键已经被用作状态键。
示例:
from langgraph.graph import START, StateGraph
# 定义节点函数
def my_node(state, config):
return {"x": state["x"] + 1} # 将状态中的 x 增加 1
# 创建并配置图
builder = StateGraph(dict)
builder.add_node(my_node) # 节点名称将自动设为 "my_node"
builder.add_edge(START, "my_node") # 从 START 到 my_node 添加边
graph = builder.compile()
graph.invoke({"x": 1})
# 输出: {'x': 2}
# 自定义节点名称
builder = StateGraph(dict)
builder.add_node("my_fair_node", my_node) # 指定节点名称为 "my_fair_node"
builder.add_edge(START, "my_fair_node")
graph = builder.compile()
graph.invoke({"x": 1})
# 输出: {'x': 2}
返回值:
名称 | 类型 | 描述 |
---|---|---|
Self | Self | 状态图的实例,支持方法链式调用。 |
1.3.2 方法 add_edge
add_edge(
start_key: Union[str, list[str]],
end_key: str
) -> Self
描述:
从起始节点(或起始节点列表)到结束节点添加一个有向边。当提供单个起始节点时,图将等待该节点完成后再执行结束节点;当提供多个起始节点时,图将等待所有起始节点完成后再执行结束节点。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
start_key | Union[str, list[str]] | 边的起始节点(或节点列表)的键。 | 必填 |
end_key | str | 边的结束节点的键。 | 必填 |
引发异常:
类型 | 描述 |
---|---|
ValueError | 如果 start_key 是 “END”,或 start_key 或 end_key 不在图中。 |
返回值:
名称 | 类型 | 描述 |
---|---|---|
Self | Self | 状态图的实例,支持方法链式调用。 |
1.3.3 方法 add_conditional_edges
add_conditional_edges(
source: str,
path: Union[
Callable[..., Union[Hashable, list[Hashable]]],
Callable[..., Awaitable[Union[Hashable, list[Hashable]]]],
Runnable[Any, Union[Hashable, list[Hashable]]]
],
path_map: Optional[Union[dict[Hashable, str], list[str]]] = None,
then: Optional[str] = None,
) -> Self
描述:
从起始节点到任意数量的目标节点添加一个条件边。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
source | str | 起始节点,条件边将在退出此节点时运行。 | 必填 |
path | Union[Callable[..., Union[Hashable, list[Hashable]]], ...] | 决定下一个节点或节点的 callable。如果返回 “END”,图将停止执行。 | 必填 |
path_map | Optional[Union[dict[Hashable, str], list[str]]] | 路径到节点名称的映射。如果省略,path 返回的路径应为节点名称。 | None |
then | Optional[str] | 在 path 选择的节点之后执行的节点名称。 | None |
返回值:
名称 | 类型 | 描述 |
---|---|---|
Self | Self | 图的实例,支持方法链式调用。 |
注意:
如果 path
函数的返回值没有类型提示(例如 -> Literal["foo", "__end__"]
)或 path_map
,图的可视化将假设边可以过渡到图中的任何节点。
1.3.4 方法 add_sequence
add_sequence(
nodes: Sequence[Union[RunnableLike, tuple[str, RunnableLike]]],
) -> Self
描述:
添加一个按提供顺序执行的节点序列。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
nodes | Sequence[Union[RunnableLike, tuple[str, RunnableLike]]] | RunnableLike 对象或 (name, RunnableLike) 元组的序列。每个节点按顺序执行。 | 必填 |
引发异常:
类型 | 描述 |
---|---|
ValueError | 如果序列为空。 |
ValueError | 如果序列包含重复的节点名称。 |
返回值:
名称 | 类型 | 描述 |
---|---|---|
Self | Self | 状态图的实例,支持方法链式调用。 |
1.3.5 方法 compile
compile(
checkpointer: Checkpointer = None,
*,
cache: Optional[BaseCache] = None,
store: Optional[BaseStore] = None,
interrupt_before: Optional[Union[All, list[str]]] = None,
interrupt_after: Optional[Union[All, list[str]]] = None,
debug: bool = False,
name: Optional[str] = None
) -> CompiledStateGraph
描述:
将状态图编译为 CompiledStateGraph
对象。编译后的图实现了 Runnable
接口,可以被调用、流式处理、批处理和异步运行。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
checkpointer | Checkpointer | 检查点保存对象或标志,用于暂停、恢复和重放图。如果为 None ,可能继承父图的检查点;如果为 False ,不使用检查点。 | None |
cache | Optional[BaseCache] | 缓存对象。 | None |
store | Optional[BaseStore] | 存储对象。 | None |
interrupt_before | Optional[Union[All, list[str]]] | 在之前中断的节点名称列表。 | None |
interrupt_after | Optional[Union[All, list[str]]] | 在之后中断的节点名称列表。 | None |
debug | bool | 是否启用调试模式。 | False |
name | Optional[str] | 编译图的名称。 | None |
返回值:
名称 | 类型 | 描述 |
---|---|---|
CompiledStateGraph | CompiledStateGraph | 编译后的状态图。 |
2. 类 CompiledStateGraph
继承自: CompiledGraph
描述:
CompiledStateGraph
是编译后的状态图,实现了 Runnable
接口,支持同步和异步执行、流式处理、状态管理和检查点功能。
2.1 方法
名称 | 描述 |
---|---|
stream | 为单个输入流式传输图的步骤。 |
astream | 异步为单个输入流式传输图的步骤。 |
invoke | 使用单个输入和配置运行图。 |
ainvoke | 异步在单个输入上调用图。 |
get_state | 获取图的当前状态。 |
aget_state | 异步获取图的当前状态。 |
get_state_history | 获取图的状态历史。 |
aget_state_history | 异步获取图的状态历史。 |
update_state | 使用给定值更新图的状态,如同来自指定节点。 |
aupdate_state | 异步使用给定值更新图的状态,如同来自指定节点。 |
bulk_update_state | 批量应用更新到图状态,需要设置检查点。 |
abulk_update_state | 异步批量应用更新到图状态,需要设置检查点。 |
get_graph | 返回计算图的可视化表示。 |
aget_graph | 异步返回计算图的可视化表示。 |
get_subgraphs | 获取图的子图。 |
aget_subgraphs | 异步获取图的子图。 |
with_config | 创建 Pregel 对象的副本并更新配置。 |
2.1.1 方法 stream
stream(
input: dict[str, Any] | Any,
config: Optional[RunnableConfig] = None,
*,
stream_mode: Optional[Union[StreamMode, List[StreamMode]]] = None,
output_keys: Optional[Union[str, Sequence[str]]] = None,
interrupt_before: Optional[Union[All, Sequence[str]]] = None,
interrupt_after: Optional[Union[All, Sequence[str]]] = None,
checkpoint_during: Optional[bool] = None,
debug: Optional[bool] = None,
subgraphs: bool = False
) -> Iterator[Union[dict[str, Any], Any]]
描述:
为单个输入流式传输图的步骤。每个步骤的输出可以以不同模式(stream_mode
)发出,例如状态值、节点更新或调试信息。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
input | `dict[str, Any] | Any` | 图的输入。 |
config | Optional[RunnableConfig] | 用于运行的配置。 | None |
stream_mode | Optional[Union[StreamMode, List[StreamMode]]] | 流式输出模式,详见下文。 | None |
output_keys | Optional[Union[str, Sequence[str]]] | 要流式的键,默认包括所有非上下文通道。 | None |
interrupt_before | Optional[Union[All, Sequence[str]]] | 在之前中断的节点,默认包括图中所有节点。 | None |
interrupt_after | Optional[Union[All, Sequence[str]]] | 在之后中断的节点,默认包括图中所有节点。 | None |
checkpoint_during | Optional[bool] | 是否在中间步骤保存检查点,默认 True 。 | None |
debug | Optional[bool] | 在执行期间是否打印调试信息,默认 False 。 | None |
subgraphs | bool | 是否流式传输子图内部的事件,默认 False 。如果为 True ,事件将以 (namespace, data) 或 (namespace, mode, data) 元组形式发出,其中 namespace 是子图节点的路径,例如 ("parent_node:<task_id>", "child_node:<task_id>") 。 | False |
stream_mode
可选项:
"values"
: 在每个步骤后发出状态中的所有值,包括中断。在函数式 API 中,值在工作流结束时发出一次。"updates"
: 在每个步骤后仅发出节点或任务名称及其返回的更新。如果同一步骤中有多个更新(例如运行多个节点),则分别发出这些更新。"custom"
: 使用StreamWriter
从节点或任务内部发出自定义数据。"messages"
: 逐个 token 发出 LLM 消息,附带任何 LLM 调用的元数据,格式为(LLM token, metadata)
的二元组。"debug"
: 为每个步骤发出包含尽可能多信息的调试事件。- 可传递列表以同时流式传输多种模式,输出为
(mode, data)
元组。
示例:
from langgraph.graph import StateGraph
from typing_extensions import TypedDict
class State(TypedDict):
value: int
graph = StateGraph(State)
def node(state: State) -> dict:
return {"value": state["value"] + 1}
graph.add_node("A", node)
graph.add_edge("A", "A")
graph.set_entry_point("A")
compiled = graph.compile()
# 流式传输值模式
for output in compiled.stream({"value": 0}, stream_mode="values"):
print(output)
# 输出: {'value': 1}, {'value': 2}, ...
# 流式传输更新模式
for output in compiled.stream({"value": 0}, stream_mode="updates"):
print(output)
# 输出: {"A": {"value": 1}}, {"A": {"value": 2}}, ...
返回值:
类型 | 描述 |
---|---|
Iterator[Union[dict[str, Any], Any]] | 图中每个步骤的输出,形状取决于 stream_mode 。 |
2.1.2 方法 astream
async astream(
input: dict[str, Any] | Any,
config: Optional[RunnableConfig] = None,
*,
stream_mode: Optional[Union[StreamMode, List[StreamMode]]] = None,
output_keys: Optional[Union[str, Sequence[str]]] = None,
interrupt_before: Optional[Union[All, Sequence[str]]] = None,
interrupt_after: Optional[Union[All, Sequence[str]]] = None,
checkpoint_during: Optional[bool] = None,
debug: Optional[bool] = None,
subgraphs: bool = False
) -> AsyncIterator[Union[dict[str, Any], Any]]
描述:
异步为单个输入流式传输图的步骤。参数与 stream
方法相同。
示例:
import asyncio
from langgraph.graph import StateGraph
from typing_extensions import TypedDict
class State(TypedDict):
value: int
graph = StateGraph(State)
def node(state: State) -> dict:
return {"value": state["value"] + 1}
graph.add_node("A", node)
graph.add_edge("A", "A")
graph.set_entry_point("A")
compiled = graph.compile()
async def main():
async for output in compiled.astream({"value": 0}, stream_mode="values"):
print(output)
asyncio.run(main())
# 输出: {'value': 1}, {'value': 2}, ...
返回值:
类型 | 描述 |
---|---|
AsyncIterator[Union[dict[str, Any], Any]] | 图中每个步骤的输出,形状取决于 stream_mode 。 |
2.1.3 方法 invoke
invoke(
input: dict[str, Any] | Any,
config: Optional[RunnableConfig] = None,
*,
stream_mode: StreamMode = "values",
output_keys: Optional[Union[str, Sequence[str]]] = None,
interrupt_before: Optional[Union[All, Sequence[str]]] = None,
interrupt_after: Optional[Union[All, Sequence[str]]] = None,
checkpoint_during: Optional[bool] = None,
debug: Optional[bool] = None,
**kwargs: Any
) -> Union[dict[str, Any], Any]
描述:
使用单个输入和配置运行图。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
input | `dict[str, Any] | Any` | 图的输入数据。 |
config | Optional[RunnableConfig] | 图运行的配置。 | None |
stream_mode | StreamMode | 图运行的流模式,默认 "values" 。 | "values" |
output_keys | Optional[Union[str, Sequence[str]]] | 从图运行中检索的输出键。 | None |
interrupt_before | Optional[Union[All, Sequence[str]]] | 在之前中断图运行的节点。 | None |
interrupt_after | Optional[Union[All, Sequence[str]]] | 在之后中断图运行的节点。 | None |
debug | Optional[bool] | 启用图运行的调试模式。 | None |
**kwargs | Any | 传递给图运行的额外关键字参数。 | {} |
返回值:
类型 | 描述 |
---|---|
Union[dict[str, Any], Any] | 如果 stream_mode 为 "values" ,返回最新输出。如果 stream_mode 不是 "values" ,返回输出块列表。 |
2.1.4 方法 ainvoke
async ainvoke(
input: dict[str, Any] | Any,
config: Optional[RunnableConfig] = None,
*,
stream_mode: StreamMode = "values",
output_keys: Optional[Union[str, Sequence[str]]]] = None,
interrupt_before: Optional[Union[All, Sequence[str]]] = None,
interrupt_after: Optional[Union[All, Sequence[str]]] = None,
checkpoint_during: Optional[bool] = None,
debug: Optional[bool] = None,
**kwargs: Any
) -> Union[dict[str, Any], Any]
描述:
异步在单个输入上调用图。参数与 invoke
方法相同。
返回值:
类型 | 描述 |
---|---|
Union[dict[str, Any], Any] | 如果 stream_mode 为 "values" ,返回最新值。如果 stream_mode 为 "chunks" ,返回块列表。 |
2.1.5 方法 get_state
get_state(
config: RunnableConfig,
*,
subgraphs: bool = False
) -> StateSnapshot
描述:
获取图的当前状态。
2.1.6 方法 aget_state
async aget_state(
config: RunnableConfig,
*,
subgraphs: bool = False
) -> StateSnapshot
描述:
异步获取图的当前状态。
2.1.7 方法 get_state_history
get_state_history(
config: RunnableConfig,
*,
filter: Optional[dict[str, Any]] = None,
before: Optional[RunnableConfig] = None,
limit: Optional[int] = None
) -> Iterator[StateSnapshot]
描述:
获取图的状态历史。
2.1.8 方法 aget_state_history
async aget_state_history(
config: RunnableConfig,
*,
filter: Optional[dict[str, Any]] = None,
before: Optional[RunnableConfig] = None,
limit: Optional[int] = None
) -> AsyncIterator[StateSnapshot]
描述:
异步获取图的状态历史。
2.1.9 方法 update_state
update_state(
config: RunnableConfig,
values: Union[dict[str, Any], Any, None],
as_node: Optional[str] = None,
) -> RunnableConfig
描述:
使用给定值更新图的状态,如同来自 as_node
节点。如果未提供 as_node
,将设置为最后一个更新状态的节点(若不模糊)。
2.1.10 方法 aupdate_state
async aupdate_state(
config: RunnableConfig,
values: Union[dict[str, Any], Any],
as_node: Optional[str] = None,
) -> RunnableConfig
描述:
异步使用给定值更新图的状态,如同来自 as_node
节点。如果未提供 as_node
,将设置为最后一个更新状态的节点(若不模糊)。
2.1.11 方法 bulk_update_state
bulk_update_state(
config: RunnableConfig,
supersteps: Sequence[Sequence[StateUpdate]],
) -> RunnableConfig
描述:
批量应用更新到图状态,需要设置 checkpointer
。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
config | RunnableConfig | 要应用更新的配置。 | 必填 |
supersteps | Sequence[Sequence[StateUpdate]] | 超级步骤的列表,每个超级步骤包括按顺序应用于图状态的更新列表。每个更新是 (values, as_node) 形式的元组。 | 必填 |
引发异常:
类型 | 描述 |
---|---|
ValueError | 如果未设置 checkpointer 或未提供更新。 |
InvalidUpdateError | 如果提供了无效的更新。 |
返回值:
名称 | 类型 | 描述 |
---|---|---|
RunnableConfig | RunnableConfig | 更新后的配置。 |
2.1.12 方法 abulk_update_state
async abulk_update_state(
config: RunnableConfig,
supersteps: Sequence[Sequence[StateUpdate]],
) -> RunnableConfig
描述:
异步批量应用更新到图状态,需要设置 checkpointer
。参数、异常和返回值与 bulk_update_state
相同。
2.1.13 方法 get_graph
get_graph(
config: Optional[RunnableConfig] = None,
*,
xray: Union[int, bool] = False
) -> Graph
描述:
返回计算图的可视化表示。
2.1.14 方法 aget_graph
async aget_graph(
config: Optional[RunnableConfig] = None,
*,
xray: Union[int, bool] = False
) -> Graph
描述:
异步返回计算图的可视化表示。
2.1.15 方法 get_subgraphs
get_subgraphs(
*,
namespace: Optional[str] = None,
recurse: bool = False
) -> Iterator[tuple[str, PregelProtocol]]
描述:
获取图的子图。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
namespace | Optional[str] | 用于过滤子图的命名空间。 | None |
recurse | bool | 是否递归到子图中,默认仅返回直接子图。 | False |
返回值:
类型 | 描述 |
---|---|
Iterator[tuple[str, PregelProtocol]] | (namespace, subgraph) 对的迭代器。 |
2.1.16 方法 aget_subgraphs
async aget_subgraphs(
*,
namespace: Optional[str] = None,
recurse: bool = False
) -> AsyncIterator[tuple[str, PregelProtocol]]
描述:
异步获取图的子图。参数和返回值与 get_subgraphs
相同。
2.1.17 方法 with_config
with_config(
config: Optional[RunnableConfig] = None,
**kwargs: Any
) -> Self
描述:
创建 Pregel
对象的副本并更新配置。
3. 类 Graph
描述:
Graph
是 StateGraph
的基类,提供基本的图操作方法。
3.1 方法
名称 | 描述 |
---|---|
add_node | 向图中添加一个新节点。 |
add_edge | 从起始节点到结束节点添加一个有向边。 |
add_conditional_edges | 从起始节点到任意数量的目标节点添加一个条件边。 |
compile | 将图编译为 CompiledGraph 对象。 |
3.1.1 方法 add_node
add_node(
node: Union[str, RunnableLike],
action: Optional[RunnableLike] = None,
*,
metadata: Optional[dict[str, Any]] = None
) -> Self
描述:
向图中添加一个新节点。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
node | Union[str, RunnableLike] | 这个节点将运行的函数或 runnable 。如果提供的是字符串,它将被用作节点名称,action 将被用作函数或 runnable 。 | 必填 |
action | Optional[RunnableLike] | 与节点关联的动作。如果 node 是字符串,则用作节点函数或 runnable 。 | None |
metadata | Optional[dict[str, Any]] | 与节点关联的元数据。 | None |
3.1.2 方法 add_edge
add_edge(start_key: str, end_key: str) -> Self
描述:
从起始节点到结束节点添加一个有向边。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
start_key | str | 边的起始节点的键。 | 必填 |
end_key | str | 边的结束节点的键。 | 必填 |
3.1.3 方法 add_conditional_edges
add_conditional_edges(
source: str,
path: Union[
Callable[..., Union[Hashable, list[Hashable]]],
Callable[..., Awaitable[Union[Hashable, list[Hashable]]]],
Runnable[Any, Union[Hashable, list[Hashable]]]
],
path_map: Optional[Union[dict[Hashable, str], list[str]]] = None,
then: Optional[str] = None,
) -> Self
描述:
从起始节点到任意数量的目标节点添加一个条件边。参数和返回值与 StateGraph
的 add_conditional_edges
方法相同。
3.1.4 方法 compile
compile(
checkpointer: Optional[Checkpointer] = None,
interrupt_before: Optional[Union[All, list[str]]] = None,
interrupt_after: Optional[Union[All, list[str]]] = None,
debug: bool = False,
name: Optional[str] = None,
*,
cache: Optional[BaseCache] = None,
store: Optional[BaseStore] = None
) -> CompiledGraph
描述:
将图编译为 CompiledGraph
对象。参数和返回值与 StateGraph
的 compile
方法类似。
4. 类 CompiledGraph
继承自: Pregel
描述:
CompiledGraph
是编译后的图,提供了与 CompiledStateGraph
类似的方法,支持流式处理、调用和状态管理。
4.1 方法
方法与 CompiledStateGraph
相同,详见第 2.1 节。
5. 函数 add_messages
add_messages(
left: Messages,
right: Messages,
*,
format: Optional[Literal["langchain-openai"]] = None
) -> Messages
描述:
合并两个消息列表,按 ID 更新现有消息。默认情况下,确保状态是“仅追加”的,除非新消息的 ID 与现有消息相同。
参数:
名称 | 类型 | 描述 | 默认值 |
---|---|---|---|
left | Messages | 基础消息列表。 | 必填 |
right | Messages | 要合并到基础列表中的消息列表(或单个消息)。 | 必填 |
format | Optional[Literal["langchain-openai"]] | 返回消息的格式,None 表示按原样返回,"langchain-openai" 表示格式化为 OpenAI 消息格式(内容可以是字符串、文本块或图像 URL 块,工具响应作为单独的 ToolMessages 返回)。 | None |
要求:
必须安装 langchain-core>=0.3.11
才能使用此功能。
返回值:
类型 | 描述 |
---|---|
Messages | 带有 right 中消息合并到 left 中的新消息列表。 |
Messages | 如果 right 中的消息与 left 中的消息具有相同 ID,则替换 left 中的消息。 |
示例:
5.1 基本用法
from langchain_core.messages import AIMessage, HumanMessage
msgs1 = [HumanMessage(content="Hello", id="1")]
msgs2 = [AIMessage(content="Hi there!", id="2")]
add_messages(msgs1, msgs2)
# 输出: [HumanMessage(content='Hello', id='1'), AIMessage(content='Hi there!', id='2')]
5.2 覆盖现有消息
msgs1 = [HumanMessage(content="Hello", id="1")]
msgs2 = [HumanMessage(content="Hello again", id="1")]
add_messages(msgs1, msgs2)
# 输出: [HumanMessage(content='Hello again', id='1')]
5.3 在 StateGraph
中使用
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph
class State(TypedDict):
messages: Annotated[list, add_messages] # 使用 add_messages 注解 messages 字段
builder = StateGraph(State)
builder.add_node("chatbot", lambda state: {"messages": [("assistant", "Hello")]})
builder.set_entry_point("chatbot")
builder.set_finish_point("chatbot")
graph = builder.compile()
graph.invoke({})
# 输出: {'messages': [AIMessage(content='Hello', id=...)]}
5.4 使用 OpenAI 消息格式
from typing import Annotated
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, add_messages
class State(TypedDict):
messages: Annotated[list, add_messages(format='langchain-openai')] # 指定 OpenAI 格式
def chatbot_node(state: State) -> list:
return {"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "Here's an image:",
"cache_control": {"type": "ephemeral"},
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": "1234",
},
},
]
},
]}
builder = StateGraph(State)
builder.add_node("chatbot", chatbot_node)
builder.set_entry_point("chatbot")
builder.set_finish_point("chatbot")
graph = builder.compile()
graph.invoke({"messages": []})
# 输出:
# {
# 'messages': [
# HumanMessage(
# content=[
# {"type": "text", "text": "Here's an image:"},
# {
# "type": "image_url",
# "image_url": {"url": ""},
# },
# ],
# ),
# ]
# }
6. 总结
- StateGraph:用于定义节点、边和共享状态的图,编译后生成
CompiledStateGraph
以供执行。 - CompiledStateGraph:支持灵活的执行方式(同步/异步、流式/批量)和状态管理,
stream
方法提供了多种输出模式,适合实时处理和调试。 - add_messages:简化对话类工作流中的消息管理,支持 OpenAI 消息格式,适用于智能代理和多轮对话场景。
LangGraph 提供了一个强大且灵活的框架,适合构建复杂的 LLM 工作流。开发者可以从简单的图开始,逐步探索条件边、异步执行和检查点等高级功能。
参考资料