AI预测高考作文?

第一部分:高考作文到底能不能被“预测”?

“凡事预则立,不预则废。”——《礼记·中庸》

又是一年高考季,语文试卷刚刚落地,微博热搜就被“某省高考作文题”刷屏。有人感叹“太离谱了”,有人喊着“押中了”,还有人调侃“果然是AI时代,命题也越来越像GPT写的了”。

问题来了:

高考作文题,到底能不能被AI预测?

这并不是一个无厘头的脑洞,而是一个值得深究的技术问题——AI是否能通过机器学习和自然语言处理,分析历年高考作文命题的规律,从而预测未来可能的作文题目?

想一想,你是不是也曾在考前苦苦背诵那些“万能作文模板”“十大高频命题角度”?那么,AI是否能比人类更精准地“押题”?它会不会真的成为“高考最强辅导老师”?

先别急着否定。我们不妨先来看看“人类老师”是怎么押题的:

📖 人类的押题方法,其实就是“数据拟合”

回想你高中的语文老师,是不是每年都让你背一大堆范文,还动不动就来一句:

“从‘大我’与‘小我’、‘责任’与‘自由’、‘传承’与‘创新’这几个角度出发,高考作文基本都能写。”

是不是很熟悉?

其实他们做的事,本质上就是基于过往样本,进行趋势建模。这不就是我们做机器学习的套路吗?

  • 老师:用经验和主观判断提炼规律
  • AI:用大量语料和神经网络拟合模式

📊 从数据的角度看,高考作文其实是有“套路”的

我们简单看一下2013年到2023年的全国卷作文题(数据略):

年份 作文主题关键词
2013 社会热点:同龄人、青少年梦想
2014 家国情怀:老舍与北京城
2015 科技发展:手机的利与弊
2016 文化自信:语文素养的重要性
2017 核心价值观:理想与现实
2018 青年担当:奋斗新时代
2019 社会责任:劳动与奋斗
2020 抗疫情感:共克时艰
2021 数字社会:AI与人类共处
2022 教育话题:“双减”政策
2023 心理建设:自我认同与群体关系

这像不像某种“非线性时间序列”?每年虽然不同,但背后都埋着一些重复出现的“命题元主题”:国家意识、文化传统、社会热点、青年成长、科技伦理等。

于是问题来了:

既然人类可以根据规律押题,为什么AI不可以?

只要我们:

  1. 拿到足够多年的高考作文题
  2. 提取出关键词、语义特征
  3. 用大语言模型(如GPT)学习“命题风格”
  4. 再加点时间感知能力(比如“2024年的社会热点”)

那么——是不是就可以预测2025年的作文题?

🧠 本文目标:打造一个“AI押题系统”

本文将从头到尾动手实现一个简单但有趣的系统,它能:

  • 爬取并结构化高考作文题数据
  • 提取语义信息并进行聚类
  • 使用GPT或类似模型生成“下一道高考作文题”
  • 甚至还能自动写一篇范文!

别急,我们不是在搞玄学,而是用数据科学 + 语言模型,用“程序员的方式”做一次“教育界的押题实验”。

下一部分,我们就从如何获取高考作文题数据开始,手把手带你搭建这个“AI押题机”。

预测不等于押中,但方向对了,就不远了。


第二部分:数据收集——高考作文语料怎么爬?

“巧妇难为无米之炊。” —— 程序员版就是:“模型再强,没数据也白搭。”

在让AI预测高考作文之前,我们得先喂给它“过去吃过的饭”——也就是历年高考语文作文题、范文和解析资料。这一步听上去像苦力活,但用好Python,分分钟就能自动化。

📌 数据目标

我们需要收集以下类型的数据:

数据类型 示例
作文题目原文 “围绕‘时间的厚度’写一篇议论文…”
出题年份与试卷 “2023年 全国甲卷”
作文类型 “材料作文 / 命题作文 / 开放作文”
官方范文 范文内容(不少于800字)
命题分析 教育专家的点评或老师解析

✅ 技术路线:爬虫 + 正则 + 手动标注少量异常数据。


一、找到靠谱的作文数据源

目前国内有几个还算稳定的作文题目发布网站,比如:

我们以高考作文网为例,分析页面结构后发现,每篇文章都有一个 class 为 .title 的 div,我们可以从中提取题目链接,进入详情页获取正文。


二、用Python写一个爬虫脚本

下面是一个基础版爬虫示例,使用 requestsBeautifulSoup,用于抓取作文题目与链接:

import requests
from bs4 import BeautifulSoup

# 设置目标URL和请求头
url = "https://www.gaokao.com/e/zuowen/"
headers = {
   'User-Agent': 'Mozilla/5.0'}

# 发起请求
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')

# 提取作文题目的链接
titles = soup.select('.title a')
for title in titles:
    print(f"标题:{
     title.text}")
    print(f"链接:https://www.gaokao.com{
     title['href']}")

👆运行后我们可以获取到多个高考作文题的页面链接。


三、继续爬详情页,抓取正文内容

接下来,我们对每个详情页进行进一步爬取:

def get_essay_content(url):
    res = requests.get(url, headers=headers)
    s = BeautifulSoup(res.text, 'html.parser')
    
    try:
        # 文章正文通常在 .art_main 类中
        content_div = s.select_one('.art_main')
        paragraphs = content_div.find_all('p')
        content = "\n".join([p.text.strip() for p in paragraphs])
        return content
    except:
        return "解析失败"

# 示例调用
link = "https://www.gaokao.com/e/zuowen/64b25878d73e6.shtml"
print(get_essay_content(link))

结果通常会包含作文题干、命题背景、写作要求,有些页面甚至还有范文,非常适合训练数据集使用。


四、保存数据为结构化JSON文件

便于后续训练,我们可以将数据结构化保存:

import json

def save_data(data, filename="gaokao_essays.json"):
    with open(filename, "w", encoding="utf-8") as f:
        json.dump(data, f, ensure_ascii=False, indent=4)

# 构造数据结构示例
essay_data = {
   
    "year": 2023,
    "region": "全国甲卷",
    "title": "谈谈你对‘数智社会’的理解",
    "type": "材料作文",
    "content": "材料内容+写作要求…",
    "link": link
}

save_data([essay_data])

你可以构建一个循环,自动收集近十年所有作文数据,整理成数百条结构化样本。


五、如何处理动态加载页面?用 Selenium

有些网站使用了 JavaScript 加载内容,requests 是“看不见”的,这种情况我们可以使用 Selenium 模拟浏览器行为:

from selenium import webdriver
from selenium.webdriver.chrome.options import Options

options = Options()
options.add_argument('--headless')
driver = webdriver.Chrome(options=options)

driver.get("https://www.gaokao.com/e/zuowen/")
soup = BeautifulSoup(driver.page_source, 'html.parser')
# 后续逻辑与 requests 相同

六、实用建议:建立自己的“高考作文数据库”

抓取完几十篇之后,你就能构建一个本地数据库(可以是JSON/CSV,也可以直接存入 SQLite/MySQL),后续用于:

  • 模型训练语料
  • 命题风格提取
  • 关键词分析
  • 样式迁移生成新题

例如:

{
   
  "year": 2021,
  "region": "全国新高考Ⅰ卷",
  "type": "材料作文",
  "theme": "科技与人类关系",
  "content": "请根据以下材料写一篇作文...",
  "official_sample": "在数字时代,我们的生活被算法包围……"
}

🧩 小结

  • 我们完成了“AI预测作文”的第一步——数据获取
  • 接下来将对这些数据进行清洗、分类与语义分析
  • 为下一步的模型训练做准备!

第三部分:数据清洗与标注——让AI看懂作文题

“你喂它饭之前,得先把骨头剔干净。”—— 一位懂AI的老语文老师

在上一节,我们已经用 Python 成功爬取了大量的高考作文题原文、出题年份、试卷名称、作文要求、范文内容等等。这些数据就像是AI眼中的一堆“文字汤”,它根本看不懂。

我们接下来要做的事情,就是把这锅汤过滤干净、分类装盘,形成适合训练的“干净语料”:


📌 本节目标

任务 技术点
提取作文题干内容 正则表达式清洗
判断作文题类型(命题作文、材料作文等) 关键词 + 规则判断
提取关键词或主题 分词 + 命名实体识别
标注主题类别(科技类、家国类、成长类) 自定义分类字典 or 分类器
格式标准化为 JSON 数据结构 清洗输出训练语料

一、用正则表达式提取作文题干与要求

大部分高考作文题的格式是这样的:

阅读下面材料,根据要求写一篇不少于800字的作文。
材料如下:……
要求:自拟标题,观点明确,结构完整。

我们要抽取的是:

  • 命题方式(命题作文/材料作文/开放作文)
  • 写作要求
  • 材料正文

下面是一个提取示例:

import re

text = """阅读下面材料,根据要求写一篇不少于800字的作文。
材料如下:2020年春,新冠疫情突如其来,人们感受到了团结的力量……
要求:自拟标题,结合材料,写一篇议论文。"""

# 提取命题方式
if "阅读下面材料" in text:
    essay_type = "材料作文"
elif "根据提示语写作" in text:
    essay_type = "开放作文"
else:
    essay_type = "命题作文"

# 提取材料段
material_match = re.search(r"材料如下:(.+?)要求:", text, re.S)
material = material_match.group(1).strip() if material_match else ""

# 提取写作要求
requirement_match = re.search(r"要求:(.*)", text
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工之梦

感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值