准模版
文章平均质量分 69
MFLC
这个作者很懒,什么都没留下…
展开
-
hdu 1204 糖果大战 概率
题意:两人比赛(定义成甲和乙),两人一开始分别有n和m个糖果,玩24点,每赢一局从对方那里获得一个糖果,谁先没有糖果谁输。两个人能解除24点的概率分别为a和b,若都解出或都没解出则为平局,不交换糖果。求甲赢的概率。题解:一个Markov过程的应用。详细信息链接:Markov过程-百度文库具体Markov过程没有怎么了解,基本概念是马可夫过程的条件概率仅仅与系统的转载 2015-01-20 13:38:46 · 574 阅读 · 0 评论 -
hdu1411知六边长求四面体体积
欧拉四面体问题 Euler's Tetrahedron Problem 以六条棱表示四面体的体积. 涉及的知识点知识点一: 矢量的数量积 知识点二: 矢量的向量积用六条棱长表示的四面体体积公式 内容:将四面体放入直角坐标系内,利用矢量混合积的几何意义及坐标运算公式,结合矢量数量积的坐标运算公式、定义及余弦定理得到用六条棱长表示的四面体体积公式。公式: 欧拉四转载 2015-01-22 18:48:41 · 1655 阅读 · 0 评论 -
hdu1141 (Factstone Benchmark(利用对数进行大数比较))
这个题的意思就是求 N!两边同时取对数,得到 log(N!)log(N!)=log(1*2*3*4*……N)=log(1)+log(2)+log(3)+log(4)+……log(N);则问题转化为求: log(1)/ log(2.0)+ log(2)/ log(2.0)+ log(3)/ log(2.0)+…… log(N)/ log(2.0)从而避转载 2015-01-22 19:10:21 · 476 阅读 · 0 评论 -
hdu1133(卡特兰数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1133卡特兰数的应用:( C(m+n, n) - C(m+n, m+1) ) * m! * n! 化简即 (m+n)! * (m-n+1) / (m+1)#include#include#define maxn 390using namespace std;int arr[max转载 2015-01-24 04:59:12 · 1309 阅读 · 0 评论