一、问题描述
N个身陷绝境的人一致统一按照以下的方式减少总的人数:他们做成一圈,从开始位置开始报数,报数为M的人就会被杀死,直到剩下最后一个人。现在给定数值N和M(N>M),小明在这N个人中的,小明站在哪一个位置,才能活下来。
二、问题分析
解法:1.使用队列,复杂度为O(M*N);
2.使用链表,复杂度为O(M*N);
3.使用递归,复杂度为O(N);
前两种解法没有什么特别的,就是模拟报数的过程,下面仅仅讨论使用递归的方法。
编号 | 0 | 1 | 2 | 3 | ...... | k-2 | k-1 | k | ...... | winer(f(N)) | ...... | N-3 | N-2 | N-1 |
编号 | N-K | N-K+1 | N-K+2 | N-K+3 | ...... | N-2 | lose | 0 | ...... | winer(f(N-1)) | ...... | N-K-3 | N-K-2 | N-K-1 |
编号从0开始,其中K=M%N,记f(x)表示x个人时候,最后的胜利者,显然,f(1)=0。
如果能够发现f(x)和f(x-1)的关系,问题就得到了解决。
仔细看上面的变化情况,可以看到f(x)=f(x-1)+k。但是可能会溢出,所以有f(x)=(f(x-1)+k)%x。
三、程序实现(java)
public class josephus
{
private int N;
private int M;
public void setNM(int a,int b)
{
N=a;
M=b;
}
public int kill(int a)
{
if(a==1) return 0;
return ( kill(a-1)+M)%a;
}
public static void main(String[] args)
{
josephus s=new josephus();
s.setNM(10,3);
System.out.println(s.kill(s.N)+1);
}
}