自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(68)
  • 资源 (2)
  • 收藏
  • 关注

原创 linux下docker compose本地部署dify

Dify安装指南:1)在/opt下创建dify目录;2)克隆Dify仓库;3)启动Docker Compose服务(需提前配置镜像源);4)通过服务器IP访问80端口完成设置。包含创建目录、克隆代码、启动服务、访问配置全流程,并附带界面截图说明插件设置步骤。

2025-11-20 09:45:44 216

原创 linux下使用xinference本地部署LLM

本文介绍了如何在CentOS系统上安装Xinference多模型推理服务的完整流程。主要内容包括:1)通过pyenv安装Python 3.11.x并配置虚拟环境;2)安装Xinference及其依赖项;3)设置Hugging Face镜像加速(针对国内用户);4)启动Xinference服务并访问Web UI界面。文中详细说明了每个步骤的具体命令和注意事项,特别强调了环境配置、依赖安装和服务安全设置等关键环节。该教程适合需要搭建本地AI推理服务的开发者参考。

2025-11-19 15:34:32 381

原创 linux下使用Ollama本地部署LLM

Ollama 是一个用于在本地运行大语言模型(如 Llama 2、Mistral、Gemma、Qwen 等)的工具,支持模型的拉取、运行、管理等功能。当你运行ollama。

2025-11-19 15:33:44 858

原创 第八章langchain4j之mcp 和 agent to agent顺序工作流

本文介绍了LangChain4j模型上下文协议(MCP)的实现。主要内容包括: 创建langchain4j-14chat-mcp子模块的pom.xml配置,包含Spring Boot、LangChain4j核心及社区组件、DashScope(Qwen)集成等依赖; 配置application.properties设置服务端口、DashScope API密钥和模型参数; 定义McpService服务接口提供聊天功能; 实现Web控制器,集成MCP客户端和工具提供者,通过AiServices与流式聊天模型交互。

2025-11-02 07:47:43 279

原创 第七章langchain之向量数据库和RAG

本文介绍了一个基于LangChain4J框架构建的嵌入式向量数据库项目。项目创建了langchain4j-12chat-embedding子模块,包含POM配置、Spring Boot应用设置、AI模型配置和Web控制器。关键技术点包括: 使用OpenAI embedding模型处理文本向量化 集成Qdrant向量数据库存储和检索嵌入向量 通过Spring Boot提供Web服务接口 项目配置了Qdrant客户端连接,实现了文本段落的嵌入向量化处理与存储检索功能,为后续构建基于向量相似度的智能对话系统奠定了

2025-11-02 07:45:13 216

原创 第六章langchain4j之Tools和prompt

创建子模块langchain4j-11chat-functioncalling。创建子模块langchain4j-09chat-prompt。

2025-11-01 15:44:45 624

原创 第五章Langchain4j之基于内存和redis实现聊天持久化

创建子模块langchain4j-10chat-persistence。创建子模块langchain4j-08chat-memory。

2025-11-01 15:44:05 246

原创 第四章Langchain4j之流式输出和多模态文本图片应用

本文介绍了基于LangChain4j框架开发的多模态文本图片应用实现。项目创建了子模块langchain4j-06chat-image,主要包含: Maven配置:集成了Spring Boot、LangChain4j(支持OpenAI协议)、阿里云DashScope(通义千问)等依赖 AI模型配置:通过LLMConfig类配置了: 多模态模型qwen-vl-max(支持图文结合输入) 图片生成模型wanx2.1-t2i-turbo(基于通义万象) 功能实现: 支持文本和图片的联合输入处理 调用阿里云API实

2025-10-31 11:48:16 53

原创 第三章Langchain4j高阶AiServices和模型参数应用

本文介绍了基于LangChain4j框架实现AI服务的高阶API应用。首先创建了子模块langchain4j-04low-high-api,配置了pom.xml依赖项(包括SpringBoot、LangChain4j及OpenAI集成)。通过定义ChatAssistant接口和LLMConfig配置类,使用AiServices创建聊天助手服务。控制器HighApiController提供了REST接口测试功能。此外还创建了模型参数子模块langchain4j-05model-parameters,用于后续调

2025-10-31 11:45:53 59

原创 第二章Langchain4j多模型共存和整合springboot

多模型共存,整合spring boot

2025-10-30 10:34:31 76

原创 第一章Lanchain4基本应用

LangChain4j是一个专为Java开发者设计的开源框架,旨在简化大型语言模型(LLM)在Java应用中的集成。它通过统一的API抽象了与不同LLM提供商(如OpenAI、Google Gemini、阿里通义千问等)的交互,并提供了声明式AI服务、检索增强生成(RAG)、工具扩展、智能体和聊天记忆管理等核心功能。框架支持与Spring Boot无缝集成,开发者可通过简单的注解和配置快速构建上下文感知的AI应用。文档提供了详细的模型API申请指南和环境配置说明,包括不同平台的API Key获取方法。项目采

2025-10-30 10:30:09 1239

原创 ThreadLocal

ThreadLocal是Java中实现线程隔离的机制,它为每个线程提供变量的独立副本,避免多线程共享变量时的同步问题。核心用法包括创建(withInitial())、设置(set())、获取(get())和清理(remove())。典型应用场景包括数据库连接管理、用户会话信息和SimpleDateFormat线程安全等。其原理是通过线程内部的ThreadLocalMap存储变量。需注意内存泄漏风险,尤其在线程池环境中要及时调用remove()清理。对于需要父子线程继承的场景,可使用InheritableTh

2025-10-25 12:07:58 705

原创 volatile

适合使用volatile的典型场景包括:​​状态标志(boolean flag)​​比如:程序运行状态、停止标志、开关控制等。​​单次安全发布(Safe Publication)​​比如:双重检查锁定(DCL)实现线程安全的单例模式。保证对象初始化完成后才被其他线程看到。​​读多写少的简单共享变量​​比如配置项、实时状态,只有一个线程写,多个线程读。

2025-10-25 12:06:41 879

原创 kafka-3.3.1

Apache Kafka® 3.3.1 文档摘要 Apache Kafka是一个分布式事件流平台,支持发布/订阅事件流、持久存储数据及实时/回溯处理。其核心功能包括: 事件流处理:捕获、存储和处理实时数据流,应用于金融、物流、物联网、零售等多个领域。 分布式架构:由服务器(Broker)和客户端(Producer/Consumer)组成,支持高容错和扩展性。 核心概念:事件(消息)、主题(分类存储)、分区(分布式扩展)、副本(数据冗余)。 API支持:提供管理、生产、消费、流处理及连接外部系统的API,支持

2025-10-20 17:42:21 455

原创 CompletableFuture

文章摘要: CompletableFuture是Java中强大的异步编程工具,具有异步执行、链式调用、组合操作和异常处理等核心特性。文章详细介绍了其推荐使用场景(如合并服务调用结果、异步数据库查询等),并提供了常用方法对照表(supplyAsync、thenApply等)。通过一个优惠券抢购的高并发示例,展示了如何结合线程池实现资格检查、库存验证和发放优惠券的完整异步流程,体现了CompletableFuture在构建高性能异步系统时的优势。示例特别强调了自定义线程池的使用和并发控制的重要性。

2025-10-20 17:34:46 729

原创 10.Spring ai alibaba MCP本地&远程

MCP本地与远程调用技术解析 MCP(Model Context Protocol)是由Anthropic推出的标准化协议,旨在解决智能体(Agent)与工具间交互的两大挑战:外部工具调用和多智能体协作。该协议提供统一接口访问外部数据源,简化了AI集成过程,克服了传统方式架构碎片化的问题。 MCP支持两种通信机制:stdio用于本地服务(如代码编辑器和设计软件),SSE用于远程API调用(如天气查询和邮件服务)。典型应用场景包括智能编程助手、数据分析工具和企业知识管理等。安装配置支持Python(uvx)和

2025-10-05 10:52:31 901

原创 9.Spring ai alibaba 运维助手实战

本文介绍了Redis Stack与原生Redis的核心差异,包括数据结构、查询能力、使用场景和开发体验的对比。详细讲解了Docker环境下Redis Stack的安装配置步骤,包括持久化验证和ReJSON命令使用。同时展示了一个基于Spring AI和Alibaba技术的运维助手实现方案,涵盖技术栈集成配置、Redis序列化、LLM模型配置等核心代码实现,以及运维知识库的向量化数据初始化方法。

2025-10-05 10:45:48 816

原创 RAG概念

摘要: RAG(检索增强生成)技术通过结合外部知识库检索与大模型生成能力 JRAG(检索增强生成)技术通过结合外部知识库检索与大模型生成能力,有效解决传统大模型的幻觉多、知识更新慢等问题。其工作流程分为检索(从向量化知识库匹配相关信息)、增强(将检索结果整合到提示中)和生成(基于增强提示输出答案)三个阶段。RAG的优势包括减少幻觉、支持知识实时更新、处理私有数据、可追溯答案来源且成本较低。核心组件包括检索器 Sklearn 核心组件包括检索器(如FAISS)、生成器(如GPT-4)和知识库。该技术广泛应用于

2025-10-01 10:28:54 1002

原创 向量向量数据库

向量数据库概述 向量数据库是专门存储和检索高维向量数据的系统,用于处理非结构化数据的向量化表示。核心功能包括向量存储、索引构建和相似性搜索(ANN),支持元数据过滤。典型应用包括语义搜索、推荐系统、图像检索、多模态搜索和AI辅助。主流产品分为开源方案(Milvus、Weaviate)和商业服务(Pinecone),选型需考虑规模、成本和易用性。大规模生产推荐Milvus或Pinecone,轻量应用可选Faiss或Chroma。

2025-10-01 09:46:45 568

原创 2.Cherry Studio中使用MCP

Cherry Studio MCP实用指南摘要 Cherry Studio是一款多功能AI助手平台,支持Windows/Linux/Mac系统,提供可视化MCP服务配置。使用前需下载安装并配置API密钥,通过简单JSON配置即可启用MySQL等MCP服务。平台内置自动检测依赖功能,可一键安装uv、bun等工具。实践案例展示如何通过自然语言指令自动完成数据库建表、数据插入及复杂SQL查询(如窗口函数计算部门人数占比)。该工具显著简化了数据库操作流程,实现"低代码智能流程"构建。

2025-09-25 13:14:16 556

原创 复习sql语句

📌 SQL 逻辑执行顺序与实用查询示例 1️⃣ SQL执行顺序:从FROM确定数据源→WHERE过滤→GROUP BY分组→聚合运算→HAVING筛选分组结果→SELECT选择输出列→DISTINCT去重→ORDER BY排序→LIMIT限制结果数 2️⃣ 核心分组统计: 统计各部门人数(COUNT) 计算部门平均年龄(AVG) 筛选人数>2的部门(HAVING) 查询年龄>30的部门分布(WHERE先过滤) 3️⃣ 高级分析: 窗口函数计算部门人数占比(OVER()) 排名函数对比(ROW_

2025-09-25 13:04:17 946

原创 1.MCP

MCP 理解

2025-09-23 21:01:08 621

原创 8.Spring Ai Alibaba招聘助手实战

本文介绍了基于Spring AI和Alibaba Dashscope构建的智能招聘助手系统。该系统通过搭建RAG知识库存储候选人简历信息,结合自定义工具类实现岗位匹配度分析,并设计了专业可靠的AI招聘助手角色。系统核心技术包括:1) 使用Spring Boot搭建基础框架;2) 通过向量数据库存储处理简历数据;3) 开发岗位匹配度分析工具;4) 设定AI助手的行为规范和人设。该解决方案能有效提升企业招聘效率,实现简历智能筛选和候选人评估功能,为HR提供数据驱动的决策支持。

2025-09-23 13:40:19 884

原创 怎么验证订单编号

文章摘要: 本文讨论了机票订单号验证方法的实现。订单号格式要求为"JT+年月日(yyyyMMdd)+6位数字"。作者通过Java代码实现了一个验证方法,检查前缀、日期格式和数字位数,并确保日期不超过当前时间。测试案例涵盖了合法订单号、月份错误、未来日期、前缀错误和数字位数不足等场景。验证结果显示程序能正确识别各种非法订单号。该方法通过日期格式解析和逻辑校验,实现了对订单号格式的严格验证。

2025-09-22 18:10:25 219 1

原创 7.Spring Ai Alibaba实现RAG

Spring AI实现RAG技术摘要 RAG(检索增强生成)是一种结合检索系统和生成模型的技术框架,通过外部知识库增强大语言模型的回答准确性和时效性。Spring AI实现RAG主要包括以下流程: 核心组件:使用嵌入模型将文本转换为向量,存储在向量数据库中进行相似性检索 工作流程:用户提问→问题向量化→向量数据库检索→构建上下文提示词→大模型生成回答 应用场景:企业知识问答、金融法律咨询、电商客服、医疗健康等领域 Spring实现:通过配置ChatClient和VectorStore等Bean,完成文档向量

2025-09-22 15:20:45 1470

原创 6.Spring AI Alibaba图像 & 语音

Spring AI图像模型API提供了简洁的接口进行图像生成,支持多种模型和配置选项。核心接口ImageModel封装了图像生成功能,ImagePrompt封装输入参数,ImageResponse处理输出结果。开发者可通过简单配置实现"文生图"功能,如导入依赖、创建提示对象并调用模型生成图像。该API设计遵循Spring模块化理念,支持不同图像模型的灵活切换。

2025-09-22 15:15:10 868

原创 5.Spring AI Alibaba

摘要:Spring AI Alibaba 是阿里云通义大模型与 Spring AI 深度结合的 Java AI 开发框架,基于 Spring Boot 3.x 构建。它为 Java 开发者提供了一套符合 Spring 开发习惯的 API,支持模型调用、提示词工程、RAG、工具调用等核心 AI 能力。本文详细介绍了如何快速搭建基于通义大模型的智能对话服务,包括 API Key 申请、项目配置和 Controller 开发。该框架降低了 Java 开发者的 AI 应用门槛,提供易用性强、功能完备的 AI 开发体

2025-09-21 15:41:36 830

原创 4.Spring AI调用Ollama

本文将介绍如何在本地部署Ollama并与Spring AI集成。首先下载安装Ollama工具,支持多种开源AI模型本地运行。安装时可自定义模型存储路径,并提供了硬件配置建议。随后演示如何拉取DeepSeek模型并启动服务。文章第二部分详细说明了创建Spring Boot工程的过程,包括依赖配置、属性设置、启动类和控制器编写,最终实现通过REST API调用本地AI模型的功能。整个过程实现了从AI模型本地部署到与Spring应用集成的完整流程。

2025-09-21 12:44:20 1123

原创 3.Spring AI的工具调用

Spring AI工具调用功能摘要(147字): Spring AI提供工具调用机制,使大语言模型能动态触发外部函数。开发者通过@Tool注解定义工具方法,用record声明参数结构,系统自动完成注册和调用流程。实现步骤包括:1)配置依赖和模型参数;2)创建带@Tool注解的运算工具类;3)在Controller中注入工具并指定系统提示词。测试表明,当用户输入算术请求时,模型能正确调用对应工具(如加法/乘法运算)并返回结果。该功能通过规范化的工具定义和自动注册机制,显著简化了AI与业务逻辑的集成过程。

2025-09-20 16:45:05 1173

原创 2.Spring AI的聊天模型

Spring AI聊天模型摘要 Spring AI提供了两种主要接口来集成AI聊天功能:ChatClient和ChatModel。ChatClient是高级接口,简化了与AI模型的交互过程,支持简单对话、角色预设和流式响应。开发者可以通过配置默认系统角色和用户提示来定制交互风格,并选择流式或非流式响应方式优化用户体验。底层ChatModel接口则提供更基础的控制,处理Prompt和ChatResponse对象。两种接口共同实现了与预训练语言模型(如DeepSeek)的集成,使开发者能轻松将AI聊天功能嵌入S

2025-09-20 13:11:50 998

原创 1.SpringAI

摘要: Spring AI是Spring生态系统推出的AI应用框架,旨在将Spring的设计原则(如模块化、可移植性)应用于AI领域。它简化了AI大模型应用的开发,支持主流AI供应商(如OpenAI、DeepSeek)和多种模型类型(聊天、文本生成等),并提供向量数据库集成、POJO映射等功能。本文以DeepSeek为例,详细介绍了如何通过Spring AI快速集成AI服务,包括API Key申请、SpringBoot工程搭建及依赖配置,帮助开发者高效构建AI应用。

2025-09-19 21:08:28 1241

原创 基于线程池与CyclicBarrier的多业务同步处理器

摘要: 本文实现了一个基于线程池与CyclicBarrier的多业务同步处理器,包含:1) 创建自定义线程池;2) 使用CyclicBarrier同步4个业务任务;3) 提交Callable任务并设置5秒超时控制;4) 主线程监控任务执行状态;5) 优雅关闭线程池。每个业务任务封装了异常处理机制,并模拟了库存、订单等业务逻辑,确保所有任务完成后再进行后续操作。(149字)

2025-09-18 09:03:09 395

原创 Java HashMap 客户数据管理及自增ID实现详解

本文介绍了使用Java HashMap管理客户数据并实现自增ID的系统设计。系统采用原子计数器保证线程安全的自增ID生成,支持固定位数格式化和动态扩展。通过Record类封装客户键值对,使用Stream API实现按金额降序排序。重点展示了自增ID生成器的实现,包括ID格式控制、线程安全处理和自动位数扩展功能。此外,分析了简单时间戳方案的局限性,并指出在分布式环境下需要引入类似雪花算法的多元素组合方案才能确保全局唯一性。该系统为单机环境下的客户数据管理提供了完整解决方案。

2025-09-18 08:12:18 439

原创 快速、归并、堆、希尔、ArrayList排序

希尔排序(Shell Sort)是插入排序的一种更高效的改进版本,也称为递减增量排序算法。它通过将原始数组按照一定的间隔(gap)分成若干子序列,对这些子序列分别进行插入排序,然后逐步缩小间隔,最终当间隔为1时,进行一次完整的插入排序。:堆排序(Heap Sort)是一种基于二叉堆数据结构的比较排序算法。它利用堆这种数据结构所设计的一种排序算法,是选择排序的优化版本。使用Timsort算法,这是一种高度优化的归并排序变体。,它是一种稳定、高效的排序算法,实际应用中常见的部分有序数据。

2025-09-05 20:15:22 730 1

原创 java冒泡、选择、插入排序

本文介绍了三种基础排序算法:冒泡排序、选择排序和插入排序。冒泡排序通过相邻元素比较交换将最大值"冒泡"到末尾;选择排序每次选择未排序部分的最小值放入已排序区;插入排序则将元素逐个插入已排序部分的正确位置。三种算法均为原地排序,时间复杂度在O(n)到O(n²)之间,适用于小规模数据。冒泡和插入排序稳定,而选择排序不稳定。文章通过Java代码示例展示了各算法的实现原理和特点。

2025-09-04 14:31:58 734

原创 java数组

可以看作是一个线性列表。数组在内存中的存储方式是。

2025-09-04 11:22:29 258

原创 k8s使用StatefulSet(有状态)部署单节点 MySQL方案(使用本地存储)

本文介绍了在Kubernetes单节点环境中部署MySQL有状态服务的方案。主要内容包括:使用Secret安全注入MySQL root密码;通过ConfigMap配置MySQL参数;手动创建Local PV和PVC绑定节点本地存储;使用StatefulSet运行MySQL容器并挂载存储;创建Service提供集群内访问;以及配置PodDisruptionBudget保障可用性。该方案适用于单节点环境,强调本地存储的可控性和非动态特性,但需注意不适合多节点高可用场景,建议通过备份和监控来保障业务连续性。

2025-09-03 11:35:45 1297

原创 DaemonSet Job CronJob 概念理解

Kubernetes 提供了三种不同的工作负载控制器:DaemonSet、Job 和 CronJob,分别适用于不同场景。 DaemonSet 确保每个节点运行一个 Pod 副本,常用于节点级服务(如日志收集、网络插件)。Job 执行一次性任务,完成后自动终止,适用于批处理或初始化任务。CronJob 是 Job 的定时版本,按计划重复执行任务,适合周期性任务(如定时备份)。 主要区别: DaemonSet:长期运行,每个节点部署 Job:一次性执行,完成后退出 CronJob:按计划重复执行 根据需求选择

2025-09-02 18:00:00 738

原创 Secrets应用

本文演示了在Kubernetes中安全部署MariaDB数据库的完整方案。通过三个关键步骤:1)使用Secret对象存储数据库敏感信息(用户名、密码等);2)创建Deployment配置MariaDB容器,从Secret注入环境变量;3)通过Service暴露数据库服务。方案采用NodePort方式,支持UTF8MB4字符集和时区设置,确保数据库安全性和可用性。最后通过kubectl命令依次部署这些资源。该方案避免了敏感信息明文存储,适合生产环境使用。

2025-09-02 17:39:33 305

原创 命名空间级别应用 Pod 安全标准

本文介绍了如何在Kubernetes集群中为命名空间启用Pod安全标准。主要内容包括:1)使用kind创建本地集群;2)创建自定义命名空间yumeko;3)通过标签为命名空间定义Pod安全级别(baseline和restricted);4)验证安全策略是否生效,测试显示在yumeko命名空间中不安全Pod被拒绝,而default命名空间不受限制;5)最后提供清理集群资源的命令。整个过程演示了如何利用内置Pod Security Admission控制器来实施命名空间级别的安全策略。

2025-09-01 20:00:00 350

### 【数据库技术】达梦SQL实践参考:DM数据库操作指南与高级特性详解述 本文档

内容概要:本文档《达梦sql实践参考.docx》全面介绍了达梦数据库(DM)中SQL的使用方法和实践技巧。涵盖了单表查询、多表联合检索、数据操纵、字符串和数字处理、范围处理、触发器、闪回查询、物化视图、DBLINK、视图和同义词、存储过程、函数、分区表、层次查询、数据类型、异常处理、记录与集合、包和嵌套子程序、读写分离集群等多个方面。每个章节详细讲解了具体的SQL语法、操作示例和注意事项,帮助用户深入理解和掌握DM数据库的各项功能。 适用人群:适用于具备一定SQL基础,特别是对达梦数据库有一定了解的研发人员和数据库管理员,尤其是工作1-3年的技术人员。 使用场景及目标: 1. **单表查询**:学习如何查询、过滤、排序单表数据,处理空值和使用条件逻辑。 2. **多表联合检索**:掌握多表连接(JOIN)、UNION等操作,理解内外连接的区别和应用场景。 3. **数据操纵**:了解如何进行插入、更新、删除操作,掌握MERGE INTO的使用。 4. **字符串和数字处理**:学习字符串函数和数值函数的使用,处理字符串和数字的各种操作。 5. **范围处理**:掌握分析函数如LEAD() OVER()的使用,处理连续值范围和同一分区中行之间的差。 6. **触发器

2025-08-26

PostgreSQL开发指南.pdf

PostgreSQL开发指南.pdf

2025-08-26

国产linux 红旗8.1 全套文档

国产linux 红旗8.1 全套文档

2025-08-26

一款破解后的思维导图工具

一款破解后的思维导图工具

2025-08-26

【Python包管理】pip常用命令详解:软件包安装、管理和依赖分析工具使用指南

内容概要:本文档详细介绍了 Python 包管理工具 pip 的常用命令及其用法。主要内容包括:生成和使用 requirements 文件进行批量操作;下载、安装、升级、卸载软件包;列出和显示已安装的软件包信息;清理缓存;检查可升级的软件包;搜索软件包;显示详细的错误信息;使用代理服务器或指定源安装软件包;安装本地或编辑模式的软件包;显示 pip 版本和帮助信息;检查 pip 工作状态。此外,还介绍了使用 pipdeptree 和 pipdeptools 分析依赖关系,如显示依赖树、检查过时依赖、生成依赖关系图、检查依赖一致性以及生成符合依赖关系的 requirements 文件。; 适合人群:Python 开发者,尤其是需要管理和维护 Python 包及其依赖关系的开发人员。; 使用场景及目标:①在项目中管理和同步依赖包;②解决依赖冲突和版本不一致的问题;③优化包管理流程,提高开发效率。; 阅读建议:对于初学者,建议先掌握基本的安装、卸载、更新等命令,再逐步学习依赖管理工具的高级用法。对于有经验的开发者,可以重点学习依赖分析工具的使用,以便更好地管理和优化项目依赖。

2025-08-26

【Python环境管理】Conda常用命令汇总:环境创建与管理、包操作及镜像源切换指南

内容概要:本文档详细介绍了 conda 常用命令及其用法,涵盖了从环境管理到包管理的各种操作。首先介绍了如何恢复默认源以及设置清华源等镜像源的方法;接着阐述了如何查看、更新 conda 版本及所有包或特定包的版本;然后重点讲解了环境管理,包括创建新环境、激活环境、列出环境中包、搜索可用包、安装和移除包、删除整个环境等操作;最后还提到了一些辅助性命令如显示当前配置的镜像源、清除构建记录和下载的包缓存以及获取帮助的方法。; 适合人群:适用于对 conda 工具有一定了解,想要深入学习 conda 命令行工具的使用方法,提高环境和包管理效率的用户。; 使用场景及目标:①快速搭建项目所需的 Python 环境;②解决由于网络原因导致的包下载慢的问题;③维护多个不同配置的 Python 环境,确保各个项目的独立性和兼容性。; 阅读建议:conda 是 Anaconda 发行版自带的包管理和环境管理工具,对于从事数据科学、机器学习等领域工作的开发者来说非常重要,建议读者结合实际项目需求来理解和记忆这些命令,同时注意命令之间的关联性。

2025-08-26

kafka 之 kraft 官网翻译指南

kafka 之 kraft 官网翻译指南

2025-08-26

spring 安全框架文档

spring 安全框架文档

2025-08-26

mybatis 入门文档

入门文档, 讲述mybatis3.3.0的入门文档

2015-09-18

工具类和验证码

工具类和验证码

2013-12-19

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除