题意:经典的机器调度问题。
在二分图G=(X,Y;E)中求取最少的顶点集v*(在{X,Y}中找),使得边ei (属于E)都和至少一个顶点vi(属于v*)相关联。这就是二分图模型中的最小顶点覆盖问题。
最小点覆盖==二分图最大匹配。
#include <iostream>
using namespace std;
const int maxn=110;
int map[maxn][maxn];
int vis[maxn];
int n,m,k,x,y,link[maxn];
int path(int u)
{
for(int v=1;v<m;v++)
{
if(map[u][v]&&!vis[v])
{
vis[v]=1;
if(link[v]==-1||path(link[v]))
{
link[v]=u;
return 1;
}
}
}
return 0;
}
int MaxMatch()
{
int res=0;
memset(link,-1,sizeof(link));
for(int i=1;i<n;i++)
{
memset(vis,0,sizeof(vis));
if(path(i))
res++;
}
return res;
}
int main()
{
int j;
while(cin>>n&&n)
{
memset(map,0,sizeof(map));
cin>>m>>k;
while(k--)
{
cin>>j>>x>>y;
if(x!=0&&y!=0)// 看题目这一句At the beginning they are both work at mode_0.
map[x][y]=1;
}
cout<<MaxMatch()<<endl;
}
return 0;
}