全排列知识:考虑n个元素组成的多重集,其中a1重复了n1次,a2 重复了n2次,…,ak重复了nk次,n=n1+n2+…+nk。
考虑n个元素的全排列,则不同的排列数为:n!/(n1!*n2!*n3!……nk!);
题意:
一个A和两个B一共可以组成三种字符串:"ABB","BAB","BBA".
给定若干字母和它们相应的个数,计算一共可以组成多少个不同的字符串.
给定若干字母和它们相应的个数,计算一共可以组成多少个不同的字符串.
import java.util.*;
import java.math.*;
public class Main
{
public static void main(String []args)
{
int i,n,j,total=0;
BigInteger result,dev,now;
int ans[] =new int [100];
Scanner cin=new Scanner(System.in);
while(cin.hasNext())
{
n=cin.nextInt();
if(n==0) return ;
total=0;
for(i=0;i<n;i++){
ans[i]=cin.nextInt();
total+=ans[i];
}
result=BigInteger.valueOf(1);
dev=BigInteger.valueOf(1);
for(i=2;i<=total;i++)
result=result.multiply(BigInteger.valueOf(i));
for(i=0;i<n;i++){
now=BigInteger.valueOf(1);
for(j=1;j<=ans[i];j++)
now=now.multiply(BigInteger.valueOf(j));
dev=dev.multiply(now);
}
System.out.println(result.divide(dev));
}
}
}