- 博客(13)
- 资源 (5)
- 收藏
- 关注
原创 书生·浦语大模型实战营(MindSearch 部署到Github Codespace 和 Hugging Face Space)
其中,app.py 的内容如下可查看以下链接:git clone https://huggingface.co/spaces/<你的名字>/<仓库名称>cd <仓库名称>
2024-09-25 23:38:20 229
原创 书生.浦语大模型实战营(茴香豆:企业级知识问答工具实践闯关任务)
然后自己用刚才的数据做数据库,效果没有Web 版茴香豆效果好,不知道是什么问题,以后再改进,后面再补充。上传了自己的金融资料,回答效果比较满意。问了一个问题,回答效果还好。
2024-09-23 21:57:33 153
原创 书生.浦语大模型实战训练营(InternVL 微调实践闯关任务)
我们使用InternVL2-2B模型,该模型已在share文件夹下挂载好,我们创建模型的软链接cd /root数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,同样地,我们制作软链接推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。
2024-09-22 21:39:20 1151
原创 书生.浦语大模型实战营(LMDeploy 量化部署实践闯关任务)
由于都使用BF16精度下的internlm2.5 1.8B模型,故剩余显存均为20.4GB,且 cache-max-entry-count 均为0.4,这意味着LMDeploy将分配40%的剩余显存用于kv cache,即20.4GB*0.4=8.16GB。这意味着int4的Cache可以存储的元素数量是BF16的四倍。不过使用这个命令的时候会报错,是因为远程下载‘ptb’数据集的时候报错的,之后参照以下链接,在本地下载’ptb’数据,然后传输到开发机上,最终在开发机的磁盘上读取数据的方式,报错消失。
2024-09-20 17:12:20 652
原创 书生大模型实战营(Lagent 自定义你的 Agent 智能体)
按照错误提示,采用"pip install class_registry"指令安装class_registry库,重新启动Web Demo后,报错消失。闯关任务要求:使用 Lagent 自定义一个智能体,并使用 Lagent Web Demo 成功部署与调用,记录复现过程并截图。我们同时启用两个工具,然后输入“请帮我生成一幅山水画”我在启动Lagent的Web Demo的时候报错了(不知道别人有没有遇到)然后,我们再试一下“帮我搜索一下 MindSearch 论文”
2024-09-18 11:19:14 253
原创 书生浦语大模型实战营(OpenCompass 评测 InternLM-1.8B 实践)
补充一下,正常完成分析时,本次进行评测耗时4个小时左右,由于是远程在开发机上操作,之前有因为本地网络中断导致连接中断,执行的评测程序也结束了,请教别人后,使用了tmux,不再出现这种情况,程序正常执行。在创建开发机界面选择镜像为 Cuda11.7-conda,并选择 GPU 为10% A100。
2024-09-13 14:18:18 437
原创 书生大模型实战营(XTuner 微调大模型个人小助手认知)
微调结束后,需要读模型进行转换,模型转换的本质其实就是将原本使用 Pytorch 训练出来的模型权重文件转换为目前通用的 HuggingFace 格式文件,最终模型被转换为 HuggingFace 中常用的 .bin 格式文件。对于全量微调的模型(full)其实是不需要进行整合这一步的,因为全量微调修改的是原模型的权重而非微调一个新的 Adapter ,因此是不需要进行模型整合的。可见模型微调后,模型权重文件发生了改变,影响了对话效果。下面是未微调前的对话效果。
2024-09-11 16:24:19 334
原创 书生大模型实战营(基础关 InternLM+LlamaIndex RAG 实践)
由于训练internlm2-chat-1_8b模型时候,xtuner框架还没出来,模型就没有xtuner的知识库,基于internlm2-chat-1_8b的问答系统给不出正确的答案。报错,提示"protobuf库未安装"(不知道是我哪个环节出了问题,别人好像没出现这种问题),然后又通过"pip install protobuf"指令安装protobuf库。之后通过RAG技术,利用github上xtuner工程中readme中的资料作为知识,利用相对轻量、支持中文且效果较好的开源词向量模型。
2024-09-11 10:48:03 242
原创 书生大模型实战营(浦语提示词工程实践)
1、首先按照以下链接https://github.com/InternLM/Tutorial/tree/camp3/docs/L1/Prompt中操作步骤操作,最终根据上面的提示打开浏览器,浏览器中出现以下界面。未添加系统提示前,大模型的回答确实有出现错误的现象,添加了系统提示词后,回答是正确的,可见好的提示词的重要性。完成一次并提交截图即可。下面根据langgpt的方法,提供合适的提示词,看能否解决开头说的"背景问题"2、学习了langgpt的写提示词的方法,在系统提示这一栏输入以下提示词。
2024-09-10 17:18:15 254
原创 书生大模型实战营(8G 显存玩转书生大模型 Demo)
按照入门课"书生大模型实战营(linux学习)“的步骤通过vscode远程到开发机后,通过以下指令(linux平台)建立一个demo文件,同时在demo文件下面新建cli_demo.py文件。在上述conda环境下执行cli_demo.py文件,模型加载完成后,再输入"帮我生成300字小故事”,会有输出结果。
2024-09-10 10:22:15 206
原创 书生大模型实战营(python 学习)
安装完,插件后设置代码断点,在vscode界面右上角选择下拉菜单中选择”Python Debugger:Debug Python File”,接下来就可以进行debug了。使用命令行发起python debug本质上是使用命令行发起一个python debug sever,通过vscode去连接debug sever,然后再去做debug。有两种debug方式,一种是对单个python文件进行非命令行debug,另一种是命令行debug。2、在vscode终端中执行pythontask.py,结果如下。
2024-09-08 16:24:13 374
原创 书生大模型实战营(linux学习)
学习网址链接:https://github.com/InternLM/Tutorial/tree/camp3/docs/L0/Linux。在本地vscode中远程开发机,在vscode终端运行如下hello_world.py程序。在本地浏览器网址栏输入"http://127.0.0.1:7860",会出现如下图。
2024-09-05 21:24:10 114
LearningOpenCV_Code
2014-10-24
l1_ls_matlab
2014-09-20
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人