自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 论坛 (2)
  • 收藏
  • 关注

原创 高德地图Api底图空白,报错Uncaught TypeError: Failed to construct ‘Request‘: Referrer ‘null‘ is not a valid URL.

高德地图Api底图空白,报错Uncaught TypeError: Failed to construct 'Request': Referrer 'null' is not a valid URL.报错内容报错原因排查原因在使用高德API绘制MultiPolygon时,在高德API示例运行正常,本地运行底图空白本地html显示:报错内容Uncaught TypeError: Failed to construct 'Request': Referrer 'null' is not a vali

2021-03-03 10:33:45 44

翻译 xgb(来不及学习啊!!)

一、概念XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升,经常被用在一些比赛中,其效果显著。它是大规模并行boosted tree的工具,它是目前最快最好的开源boosted tree工具包。XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。1、回归树与决...

2019-04-10 18:15:44 615

转载 GBDT小结

GDBT在说GBDT前,我们先说下它的俩前缀Gradient Boosting:Boosting: 这是一种迭代算法,每一次训练都是在前面已有模型的预测基础上进行。最简单地说,先训练一个初始模型,对比真实值和预测值的残差;用残差再训练一个模型,再计算残差;再训练……。这样,每一个模型都专注于修正前面模型最不给力的效果方面。于是,通过这种方式联合多个弱分类器,就能得到一个强分类器。Gra...

2019-04-07 21:43:30 81

原创 随机森林小结

随机森林算法梳理集成学习概念集成学习分类个体学习器boosting bagging结合策略(平均法,投票法,学习法)随机森林的思想随机森林的优点:随机森林的缺点:随机森林算法重要的超参数应用范围集成学习概念集成学习(ensemble learning)是指将若干弱分类器组合之后产生一个强分类器,用来提升机器学习性能,这种方法相较于当个单个模型通常能够获得更好的预测结果。弱分类器(weak le...

2019-04-04 12:27:32 401

空空如也

【SWU】 switch 问题 新手

发表于 2014-04-02 最后回复 2014-04-03

【swu】关于许多年前的杨辉三角

发表于 2014-03-10 最后回复 2014-04-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除