leetcode --- 2 sum , 3 sum , 4 sum , k sum problem

K Sum Problem

Leetcode上有2 sum problem,3 sum problem, 4 sum problem,K sum problem等问题,为方便讨论,从最简单的2 sum入手,讨论到更一般的K sum problem,这类问题一般具有这样的形式:
给定一个n长度的数组array和一个target,在数组中寻找k个数,使这k个数的和等于target,并且不存在相同的结果集。
·题目链接

·2 sum problem

   在数组中寻找两个数,使之和为target。
  ·2.1 暴力求解,这是最最朴素的解法,也是最容易想到的,但时间复杂度过高,在本题中,时间复杂度为O(n^2)。
  ·2.2 排序搜索,先将数组排序,设置首尾指针start,end,当start<end时,t_result=array[start]+array[end]如果 t_result == target,返回;如果t_result > target,--end; 如果t_result < target,++start; 否则         没有两个数的和为target。该算法排序的时间复杂度为O(nlgn),搜索的时间复杂度为O(n),总的时间复           杂度为O(nlogn)。
  ·2.3 Hash判断,把数组array中的每一个元素,存储在hash表中,接着检查每个元素的target-array[i]的值是否存在于hash表中,如果存在则存在两个数的和为target,如果检查完毕,那么没有。该算法的时间复杂度只是在扫描数组的所有元素有消耗,所以,总的时间复杂度为O(n)。


·3 sum problem
              3 sum 和 2 sum 一样,只是寻找的是3个数的和,这个问题当然也可以暴力求解,依旧是时间复杂度的问题,暴力求解的时间复杂度是O(n^3),第二种方法是先取数组中一个数,问题就转化为2 sum的问题求解,当数组中所有的数都被选定过后,问题也就解决了。例如“abcdf”,先取a,那么问题就是在bcdf中寻找两个数的和为target-a,然后取b,这个时候问题转化为cdf中寻找和为target-b的2 sum问题,a就不必再算入找寻找集合中,为什么?简单的证明即可:
     第一次取a,问题转化为bcdf重寻找和为target-a的2 sum问题,假设其中一个数是b,那么有:
      1.如果找不一个数加上a+b等于target,当选定b为第一个数时,如果第二个数选到了a,依旧不会有数满足该条件;
      2.如果能找到一个数加上a+b等于target,那么这个数时唯一确定的,当选定b为第一个数时,如果第二个数又选到a,那么这个数也唯一确定,且和选定a为第一个数,b为第二个数的最后一个数相等,那么结果集重复。再回想选取第一个数和第二个数的方式,就可以知道,在选定一个数为第一个数后,这个数后面的数都会依次被选取,如果在后面的选取中,有选择了前面的数,那么结果集肯定会重复,这样就增加了不必要的选取和计算,影响效率。至于如何筛选重复的结果集,请继续往下面看。
     针对3 sum问题转化成2 sum问题求解,那么是利用什么方法解决2 sum问题,然后再求取3 sum问题会好点了?摒弃暴力求解的方式,利用hash还是排序搜索?单从方法上讲,前者肯定由于后者,但有一个问题,如果用hash,选取第一个数时,需要便利一次数组,再存入hash,再检查hash,而C++提供的map不支持改变KEY,相对比较麻烦,排序搜索的方式,只需要排序、移动首尾指针,再检查。其中利弊自己体会。

·4 sum problem
   和3 sum问题一样,4 sum可根据相同的方式转换成2 sum问题,只不过要先选定2个数。

   当然3 sum和4 sum依然可以用hash的方式来解决,例如对3 sum,可先将任何不同位置的两个值的和求得存入hash中,再用选取的第一个数去检查hash。但是这种方式不太好检查是哪两个数的和,如果是进行是否存在检查还是很方便的。

·针对算法的优化和去重复

    可以选取所有的结果集后,再去重,这时候去重可以用hash去重,检查每组解是否一样。当然更好的方法就在求取解得过程中去重,这样能减少计算,结果中去重,可先将原数组排序,假设排序后为a a b c d,那么选取第一个a后,第二个a可以跳过不选,但是如果是 -1,-1,-1,2这样,选取第一个-1后,会有两组解-1,-1,2,这样还是会存在重复解,也就是说在求取过程中不能完全去除重复解,求取解后,还得再一次去除重复解,而经过排序后,就算有重复解,那么重复解的元素相对次序也是一样的,这个时候去重复的话也会很简单。具体看代码:
vector threeSum( vector &num )
{
    vector vecResult;
    if( num.size() < 3 )
        retrun vecResult;
    vector tripVec(3,0);
    sort(num.begin(),num.end());
    int currentVal = num[0];
    int iCount = num.size()-2;      // 最后一组情况
    for( int i = 0; i < iCount; ++i)
    {
        if( i && num[i] == currentVal ) //出去a a b c d中的a这种状况
            continue;
        tripVec[0] = num[i];
        int j = i + 1;
        int k = num.size() - 1; 
        while( j < k )
        {
            int tsum = num[j] + num[k];
            if( tsum + tripVec[0] == 0 )
            {
                tripVec[1] = num[j];
                tripVec[2] = num[k];
                vecResult.push_back(tripVec);
                ++j;
                --k;
            }
            else if(tsum + tripVec[0] < 0)
            {
                ++j;
            }
            else
                --k;
        }
    }
    vector::iterator it = unique(vecResult.bengin(),vecResult.end());  // 最后一次去重复
    vecResult.resize(distance(vecResult.begin(),it));
    return vecResult;
}

更多的讨论请参见:http://www.sigmainfy.com/blog/summary-of-ksum-problems.html,该文章对K sum有更详细的讨论。
 
     
      


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值