吃透Redis(五):网络框架篇-reactor模型

演进

如果要让服务器服务多个客户端,那么最直接的方式就是为每一条连接创建线程。

其实创建进程也是可以的,原理是一样的,进程和线程的区别在于线程比较轻量级些,线程的创建和线程间切换的成本要小些,为了描述简述,后面都以线程为例。

处理完业务逻辑后,随着连接关闭后线程也同样要销毁了,但是这样不停地创建和销毁线程,不仅会带来性能开销,也会造成浪费资源,而且如果要连接几万条连接,创建几万个线程去应对也是不现实的。

要这么解决这个问题呢?我们可以使用「资源复用」的方式。

也就是不用再为每个连接创建线程,而是创建一个「线程池」,将连接分配给线程,然后一个线程可以处理多个连接的业务。

不过,这样又引来一个新的问题,线程怎样才能高效地处理多个连接的业务?

当一个连接对应一个线程时,线程一般采用「read -> 业务处理 -> send」的处理流程,如果当前连接没有数据可读,那么线程会阻塞在 read 操作上( socket 默认情况是阻塞 I/O),不过这种阻塞方式并不影响其他线程。

但是引入了线程池,那么一个线程要处理多个连接的业务,线程在处理某个连接的 read 操作时,如果遇到没有数据可读,就会发生阻塞,那么线程就没办法继续处理其他连接的业务。

要解决这一个问题,最简单的方式就是将 socket 改成非阻塞,然后线程不断地轮询调用 read 操作来判断是否有数据,这种方式虽然该能够解决阻塞的问题,但是解决的方式比较粗暴,因为轮询是要消耗 CPU 的,而且随着一个 线程处理的连接越多,轮询的效率就会越低。

上面的问题在于,线程并不知道当前连接是否有数据可读,从而需要每次通过 read 去试探。

那有没有办法在只有当连接上有数据的时候,线程才去发起读请求呢?答案是有的,实现这一技术的就是 I/O 多路复用。

I/O 多路复用技术会用一个系统调用函数来监听我们所有关心的连接,也就说可以在一个监控线程里面监控很多的连接。

我们熟悉的 select/poll/epoll 就是内核提供给用户态的多路复用系统调用,线程可以通过一个系统调用函数从内核中获取多个事件。

select/poll/epoll 是如何获取网络事件的呢?

在获取事件时,先把我们要关心的连接传给内核,再由内核检测:

  • 如果没有事件发生,线程只需阻塞在这个系统调用,而无需像前面的线程池方案那样轮训调用 read 操作来判断是否有数据。
  • 如果有事件发生,内核会返回产生了事件的连接,线程就会从阻塞状态返回,然后在用户态中再处理这些连接对应的业务即可。

当下开源软件能做到网络高性能的原因就是 I/O 多路复用吗?

是的,基本是基于 I/O 多路复用,用过 I/O 多路复用接口写网络程序的同学,肯定知道是面向过程的方式写代码的,这样的开发的效率不高。

于是,大佬们基于面向对象的思想,对 I/O 多路复用作了一层封装,让使用者不用考虑底层网络 API 的细节,只需要关注应用代码的编写。

大佬们还为这种模式取了个让人第一时间难以理解的名字:Reactor 模式。
Reactor 翻译过来的意思是「反应堆」,可能大家会联想到物理学里的核反应堆,实际上并不是的这个意思。

这里的反应指的是「对事件反应」,也就是来了一个事件,Reactor 就有相对应的反应/响应。

事实上,Reactor 模式也叫 Dispatcher 模式,我觉得这个名字更贴合该模式的含义,即 I/O 多路复用监听事件,收到事件后,根据事件类型分配(Dispatch)给某个进程 / 线程。

Reactor 模式主要由 Reactor 和处理资源池这两个核心部分组成,它俩负责的事情如下:

  • Reactor 负责监听和分发事件,事件类型包含连接事件、读写事件;
  • 处理资源池负责处理事件,如 read -> 业务逻辑 -> send;

Reactor 模式是灵活多变的,可以应对不同的业务场景,灵活在于:

  • Reactor 的数量可以只有一个,也可以有多个;
  • 处理资源池可以是单个进程 / 线程,也可以是多个进程 /线程;

将上面的两个因素排列组设一下,理论上就可以有 4 种方案选择:

  • 单 Reactor 单进程 / 线程;
  • 单 Reactor 多进程 / 线程;
  • 多 Reactor 单进程 / 线程;
  • 多 Reactor 多进程 / 线程;

其中,「多 Reactor 单进程 / 线程」实现方案相比「单 Reactor 单进程 / 线程」方案,不仅复杂而且也没有性能优势,因此实际中并没有应用。

剩下的 3 个方案都是比较经典的,且都有应用在实际的项目中:

  • 单 Reactor 单进程 / 线程;
  • 单 Reactor 多线程 / 进程;
  • 多 Reactor 多进程 / 线程;

方案具体使用进程还是线程,要看使用的编程语言以及平台有关:

  • Java 语言一般使用线程,比如 Netty;
  • C 语言使用进程和线程都可以,例如 Nginx 使用的是进程,Memcache 使用的是线程。

接下来,分别介绍这三个经典的 Reactor 方案。

Reactor模型

单 Reactor 单线程

一般来说,C 语言实现的是「单 Reactor单进程」的方案,因为 C 语编写完的程序,运行后就是一个独立的进程,不需要在进程中再创建线程。

而 Java 语言实现的是「单 Reactor单线程」的方案,因为 Java 程序是跑在 Java 虚拟机这个进程上面的,虚拟机中有很多线程,我们写的 Java 程序只是其中的一个线程而已。

我们来看看「单 Reactor 单进程」的方案示意图:
在这里插入图片描述
可以看到进程里有 Reactor、Acceptor、Handler 这三个对象:

  • Reactor 对象的作用是监听和分发事件;
  • Acceptor 对象的作用是获取连接;
  • Handler 对象的作用是处理业务;

对象里的 select、accept、read、send 是系统调用函数,dispatch 和 「业务处理」是需要完成的操作,其中 dispatch 是分发事件操作。

接下来,介绍下「单 Reactor 单进程」这个方案:

  • Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
  • 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

单 Reactor 单进程的方案因为全部工作都在同一个进程内完成,所以实现起来比较简单,不需要考虑进程间通信,也不用担心多进程竞争。

但是,这种方案存在 2 个缺点:

  • 第一个缺点,因为只有一个进程,无法充分利用 多核 CPU 的性能;
  • 第二个缺点,Handler 对象在业务处理时,整个进程是无法处理其他连接的事件的,如果业务处理耗时比较长,那么就造成响应的延迟;

所以,单 Reactor 单进程的方案不适用计算机密集型的场景,只适用于业务处理非常快速的场景。

Redis 是由 C 语言实现的,它采用的正是「单 Reactor 单进程」的方案,因为 Redis 业务处理主要是在内存中完成,操作的速度是很快的,性能瓶颈不在 CPU 上,所以 Redis 对于命令的处理是单进程的方案。

单 Reactor 多线程

如果要克服「单 Reactor 单线程 / 进程」方案的缺点,那么就需要引入多线程 / 多进程,这样就产生了单 Reactor 多线程 / 多进程的方案。

闻其名不如看其图,先来看看「单 Reactor 多线程」方案的示意图如下:

在这里插入图片描述
详细说一下这个方案:

  • Reactor 对象通过 select (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
  • 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
  • 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;

上面的三个步骤和单 Reactor 单线程方案是一样的,接下来的步骤就开始不一样了:

  • Handler 对象不再负责业务处理,只负责数据的接收和发送,Handler 对象通过 read 读取到数据后,会将数据发给子线程里的 Processor 对象进行业务处理;
  • 子线程里的 Processor 对象就进行业务处理,处理完后,将结果发给主线程中的 Handler 对象,接着由 Handler 通过 send 方法将响应结果发送给 client;

单 Reator 多线程的方案优势在于能够充分利用多核 CPU 的能,那既然引入多线程,那么自然就带来了多线程竞争资源的问题。

例如,子线程完成业务处理后,要把结果传递给主线程的 Reactor 进行发送,这里涉及共享数据的竞争。

要避免多线程由于竞争共享资源而导致数据错乱的问题,就需要在操作共享资源前加上互斥锁,以保证任意时间里只有一个线程在操作共享资源,待该线程操作完释放互斥锁后,其他线程才有机会操作共享数据。

多 Reactor 多进程

要解决「单 Reactor」的问题,就是将「单 Reactor」实现成「多 Reactor」,这样就产生了第 多 Reactor 多进程 / 线程的方案。
老规矩,闻其名不如看其图。多 Reactor 多进程 / 线程方案的示意图如下(以线程为例):

在这里插入图片描述
方案详细说明如下:

  • 主线程中的 MainReactor 对象通过 select 监控连接建立事件,收到事件后通过 Acceptor 对象中的 accept 获取连接,将新的连接分配给某个子线程;
  • 子线程中的 SubReactor 对象将 MainReactor 对象分配的连接加入 select 继续进行监听,并创建一个 Handler 用于处理连接的响应事件。
  • 如果有新的事件发生时,SubReactor 对象会调用当前连接对应的 Handler 对象来进行响应。
  • Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。

多 Reactor 多线程的方案虽然看起来复杂的,但是实际实现时比单 Reactor 多线程的方案要简单的多,原因如下:

  • 主线程和子线程分工明确,主线程只负责接收新连接,子线程负责完成后续的业务处理。
  • 主线程和子线程的交互很简单,主线程只需要把新连接传给子线程,子线程无须返回数据,直接就可以在子线程将处理结果发送给客户端。

大名鼎鼎的两个开源软件 Netty 和 Memcache 都采用了「多 Reactor 多线程」的方案。

  • nginx:nginx是多进程模型,master进程不处理网络IO,每个Wroker进程是一个独立的单Reacotr单线程模型。
  • netty:通信绝对的王者,默认是多Reactor,主Reacotr只负责建立连接,然后把建立好的连接给到从Reactor,从Reactor负责IO读写。当然可以专门调整为单Reactor。
  • kafka:kafka也是多Reactor,但是因为Kafka主要与磁盘IO交互,因此真正的读写数据不是从Reactor处理的,而是有一个worker线程池,专门处理磁盘IO,从Reactor负责网络IO,然后把任务交给worker线程池处理。

Proactor模型

Reactor 是非阻塞同步网络模型,因为真正的 read 和 send 操作都需要用户进程同步操作。这里的“同步”指用户进程在执行 read 和 send 这类 I/O 操作的时候是同步的,如果把 I/O 操作改为异步就能够进一步提升性能,这就是异步网络模型 Proactor。

Proactor 中文翻译为“前摄器”比较难理解,与其类似的单词是 proactive,含义为“主动的”,因此我们照猫画虎翻译为“主动器”反而更好理解。Reactor 可以理解为“来了事件我通知你,你来处理”,而 Proactor 可以理解为“来了事件我来处理,处理完了我通知你”。这里的“我”就是操作系统内核,“事件”就是有新连接、有数据可读、有数据可写的这些 I/O 事件,“你”就是我们的程序代码。

Proactor 模型示意图是:
在这里插入图片描述
详细介绍一下 Proactor 方案:

  • Proactor Initiator 负责创建 Proactor 和 Handler,并将 Proactor 和 Handler 都通过 Asynchronous Operation Processor 注册到内核。
  • Asynchronous Operation Processor 负责处理注册请求,并完成 I/O 操作。
  • Asynchronous Operation Processor 完成 I/O 操作后通知 Proactor。
  • Proactor 根据不同的事件类型回调不同的 Handler 进行业务处理。
  • Handler 完成业务处理,Handler 也可以注册新的 Handler 到内核进程。

理论上 Proactor 比 Reactor 效率要高一些,异步 I/O 能够充分利用 DMA 特性,让 I/O 操作与计算重叠,但要实现真正的异步 I/O,操作系统需要做大量的工作。目前 Windows 下通过 IOCP 实现了真正的异步 I/O,而在 Linux 系统下的 AIO 并不完善,因此在 Linux 下实现高并发网络编程时都是以 Reactor 模式为主。所以即使 Boost.Asio 号称实现了 Proactor 模型,其实它在 Windows 下采用 IOCP,而在 Linux 下是用 Reactor 模式(采用 epoll)模拟出来的异步模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃透Java

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值