证明CLIQUE(团问题)是NP完全

该博客证明了CLIQUE问题是NP完全的。通过将顶点覆盖问题归约为CLIQUE问题,说明了在多项式时间内验证CLIQUE解的正确性,并且展示了如何从一个图的顶点覆盖构造其补图的团问题,从而证明了CLIQUE的NP完全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个图G的k团是G的k个顶点的集合,使得这个集合中每对顶点之间都有边

CLIQUE问题是:给定一个图G和常数k,G有没有k团?

下面通过把顶点覆盖问题归约到CLIQUE来证明:CLIQUE是NP完全的。

【证明】

显然,CLIQUE是NP(NP定义: 可以在多项式时间验证结果正确性的问题)

在给定的图G中猜测k个顶点的一个集合,并验证此集合中的任何两点之间都有边。

给定图G的顶点覆盖问题的一个实例(G,k),构造一个团问题实例(G’,n-k),其中

  1. n是图G顶点的总个数。
  2. G’是图G中边的,G’有边(u,v)当且仅当图G没有边(u,v)。

令C是图G的顶点覆盖,且C中有k个顶点;

令C’是C中顶点的补,也就是G’的(n-k)团(其实,C是G的顶点覆盖,则G中任何一条边至少有一个顶点在C中,则C的补就是在G中不存在边的顶点的集合,而G’是G中边的补,因此C’是G’的(n-k)团)。

(当)假设C’不是G’的(n-k)团,则C’中存在顶点对(u,v),在G’中没有边,那么这条边就在G中,但由于u和v都不在C中,故产生矛盾,假设不成立。

(仅当)设(u,v)是G中的边,但没有被C覆盖,则u和v都在C’中,但边(u,v)不在G’中,故产生矛盾。

由此可以证明,CLIQUE是NP完全的。

利用归约来证明给定问题是NP完全的步骤:

设P1是已知的NP完全问题,P2是要证明的NP完全问题。

断言:P1当且仅当P2

(当)用P2来证明P1;

(仅当)用P1来证明P2。

一般都是用假设不成立而产生矛盾来证明问题的。

证明CLIQUE(团问题)是NP完全_zhanghao_新浪博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值