人工智能
文章平均质量分 50
软件工程小施同学
区块链、DevOps、小程序、软件工程
展开
-
隐私计算和机密计算的区别
实现层面隐私计算主要依赖于加密算法和协议,强调在软件层面保护数据隐私。机密计算主要依赖于硬件和系统层面的保护措施,确保数据在计算过程中的机密性。应用场景隐私计算适用于多方数据协作和分析的场景,如跨组织的数据合作、联邦学习等。机密计算适用于需要在不可信环境中处理敏感数据的场景,如云计算中的数据处理、安全关键的应用程序等。保护范围隐私计算重点保护数据内容在处理和分析过程中的隐私。机密计算重点保护数据在处理过程中(特别是内存中)的机密性。原创 2024-06-20 10:54:30 · 486 阅读 · 0 评论 -
稀疏矩阵是什么 如何求
稀疏矩阵是一种特殊类型的矩阵,其中大多数元素都是零。由于稀疏矩阵中非零元素的数量远少于零元素,因此可以使用特定的数据结构和算法来高效地存储和处理它们,从而节省存储空间和计算时间。RowPtr数组中的每个元素表示对应行的第一个非零元素在Values数组中的位置。最后一个元素表示整个Values数组的长度,用来标识矩阵的结束位置。这个矩阵中非零元素只有 5 个,其余元素都是零,因此这个矩阵可以被认为是稀疏矩阵。原创 2024-06-16 21:00:46 · 681 阅读 · 0 评论 -
AI和机器学习论文中 指标F1是什么意思
F1值在AI论文和实验中被广泛使用,因为它提供了一个单一的、综合的性能指标,特别适用于评估在不平衡数据集上的分类模型。它平衡了精确率和召回率,是评估分类模型性能的重要工具。原创 2024-06-13 11:03:11 · 1122 阅读 · 0 评论 -
大语言模型微调Lora原理
原创 2024-06-12 15:07:42 · 114 阅读 · 0 评论 -
强化学习 DQN 经验回放 是什么
②未结束,则当前状态 s 更新为 s`(意思就是当前的状态变成 s`,以当前的 s`去action,得到r,得到执行该行为后的状态 s`'和游戏是否结束 done)。(4) 判断记忆池里的数据是否足够(即:记忆池里的数据数量是否超过设置的观察值),如果不够,则转到(5)步。②将所有训练样本的 s`做为神经网络的输入值,进行批量处理,得到 s`状态下每个行为的 q 值的表。,M有最大长度的限制,以保证更新采用的数据都是最近的数据。①游戏结束,给 s 随机设置一个状态,再执行(1), (2),(3),(4)。原创 2022-09-14 15:30:12 · 3067 阅读 · 0 评论 -
强化学习DQN episode是什么
强化学习原创 2022-09-14 15:24:13 · 689 阅读 · 0 评论 -
神经网络模型 基本概念 一文看懂
返回神经网络最终输出的如果我们进行简单的二元分类或回归,输出层应该只有1个神经元(因此它只返回1个数字)。如果我们有一个包含3个特征的矩阵(形状Nx3),则该层将3个数字作为输入,并将相同的3个数字传递给下一层。接下来我们要进行一个简单的计算来对结果进行预估,下面的操作类似于单个神经网络的计算,f(WX+b),其中f函数叫做激活函数。在每个神经元内部,输入和权重的线性组合也包括一个偏差,类似于线性方程中的常数,因此神经元的完整公式是。学习深度学习--深度学习中的一些基本概念。......原创 2022-07-17 20:49:41 · 3803 阅读 · 0 评论 -
K-Nearest Neighbor, KNN K最邻近 教学视频
例子【【智源学院】30分钟KNN算法-有意思专题系列(K-Nearest Neighbor, KNN)-哔哩哔哩】 https://b23.tv/izglQQj原创 2022-06-15 10:17:50 · 199 阅读 · 0 评论 -
K-Means聚类算法
什么是聚类分析聚类分析是数据挖掘中一个重要概念,其核心是寻找数据对象中隐藏的有价值的信息,根据相似性原则,把具有较高相似度的数据对象划分到同一类簇,把具有较高相异度的数据对象划分到不同类簇,从而使相同组中的数据点之间比其他组中的数据点更具有相似性。聚类算法典型的聚类算法分为三个阶段,主要包括特征选择和特征提取、数据对象间相似度计算以及根据相似度将数据对象分组。聚类算法可以分为两大类:层次聚类算法和划分聚类算法。层次聚类算法通过不同类别间的数据对象的相似度试图构建一个高层次的嵌套聚类树结构,聚类树的构建有两种转载 2022-06-14 14:45:15 · 63155 阅读 · 1 评论 -
机器学习 模型训练和模型推理 任务调度 调度目标
架构图公众哈:微程序学堂原创 2022-05-30 16:57:39 · 553 阅读 · 0 评论 -
Bellman 贝尔曼方程究竟是什么
贝尔曼方程是一种思想,而不是一个具体的公式贝尔曼方程是由美国一位叫做理查德-贝尔曼科学家发现并提出的。它的核心思想是:当我们在特定时间点和状态下去考虑下一步的决策,我们不仅仅要关注当前决策立即产生的Reward,同时也要考虑当前的决策衍生产生未来持续性的Reward。简单地说就是既要考虑当前收益最大化,还需要去关注未来持续的收益。如在Q-learning中,我们更新Q(s,a)时不仅关注当前收益也关注未来收益,当前收益就是状态变更环境立即反馈的reward,通俗易懂谈强化学习原创 2022-05-02 19:07:01 · 1417 阅读 · 0 评论 -
卷积层、池化层和全连接层 区别和作用
卷积层:提取特征。池化层:减小卷积核的尺寸,用来降维。全连接层:实现分类(Classification),在很多分类问题需要通过softmax层进行输出https://www.zhihu.com/question/276307619/answer/387253014深入理解卷积层,全连接层的作用意义 - 程序员大本营...原创 2022-04-29 09:27:50 · 2119 阅读 · 0 评论 -
机器学习 什么是Cross Entropy 交叉熵
Cross Entropy 交叉熵,网上有很多准确且专业的讲解文章,但可不可以用简单的方式告诉我啥是Cross Entropy呢?PS:本文仅作学习过程的记录与讨论Cross Entropy:一般是用来量化两个概率分布之间差异的损失函数(多用于分类问题)。举个例子,在多分类问题中,一个物体所属于不同类别的真实分布p如下:真实的分类概率也就是说,真实的分类是这个物体属于Class B。然后,你手撸了一个机器学习的预测模型,预测分布q如下:预测的分类概率你眉头一皱:我这预转载 2022-04-27 09:16:35 · 880 阅读 · 0 评论 -
强化学习 马尔可夫决策过程(MDP)是什么
2016 年上半年,李世石和 AlphaGo 的“人机大战”掀起了一波人工智能浪潮,也引起了大家对于人工智能的热烈讨论。本文主要学习人工智能中的强化学习,它是计算机以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使计算机获得最大的奖赏。以围棋为例,一个强化学习问题通常包含如下要素:动作空间(Action Space):A,可以采取的所有合法动作的集合,所有合法的落子。 状态空间(State Space):S;所有的状态的集合称为状态空间,所有的棋盘布局。 奖励(Reward转载 2022-04-26 09:07:24 · 20043 阅读 · 0 评论 -
机器学习 python 随机抽样random sampling 代码
from numpy.random import choicesamples = choice(['R','G','B'], size=100, p=[0.2,0.5,0.3])print(samples)供众号:微程序学堂原创 2022-04-22 09:08:56 · 2827 阅读 · 0 评论 -
机器学习的原理 步骤
下⾯以监督学习为例上⾯提到的认字的卡⽚在机器学习中叫——训练集 上⾯提到的“⼀条横线,两条横线”这种区分不同汉字的属性叫——特征 ⼩朋友不断学习的过程叫——建模 学会了识字后总结出来的规律叫——模型...转载 2022-04-20 08:58:10 · 183 阅读 · 0 评论 -
机器学习、⼈⼯智能、深度学习是什么关系?
机器学习包含了很多种不同的算法, 深度学习就是其中之⼀, 其他⽅法包括决策树, 聚 类,⻉贝叶斯等。面向所有人的机器学习科普大全(附pdf百度下载链接)转载 2022-04-20 08:54:57 · 187 阅读 · 0 评论 -
梯度下降 是什么
梯度是一个偏微分向量,有大小、有方向【梯度下降-探寻最优解】深度学习梯度下降法可视化讲解 高中生都说懂!激活函数与Loss的梯度(深度学习/感知机/链式法则/随机梯度下降)_哔哩哔哩_bilibili...原创 2022-04-18 13:30:11 · 874 阅读 · 0 评论