Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and put
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
class LRUCache {
HashMap<Integer,Integer> val;//key,val
LinkedHashSet<Integer> sequence;//记录时间顺序,值为key
int capacity;
public LRUCache(int capacity) {
this.val = new HashMap<Integer,Integer>();
this.sequence = new LinkedHashSet<Integer>();
this.capacity = capacity;
}
public int get(int key) {
if(val.get(key)==null) return -1;
int res = val.get(key);
if(sequence.contains(key)){
sequence.remove(key);
}
sequence.add(key);
return res;
}
public void put(int key, int value) {
if(val.containsKey(key)){
val.put(key, value);
get(key);
return ;
}else{
if(val.size()>=capacity){
int k = sequence.iterator().next();
val.remove(k);
sequence.remove(k);
}
val.put(key, value);
sequence.add(key);
return ;
}
}
}
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/